
HotDocs API

iii

Table of Contents

Help Topics for the HotDocs Application Programming Interface (API) .. 1

Organization of the Help File .. 1

Find Topics in the Help File .. 1

Other Help Resources .. 1

Copyright Information .. 3

Copyright .. 3

Warranty Information ... 3

Government Use .. 3

Trademark Information.. 3

New Features and Enhancements .. 5

New and Enhanced Features in the HotDocs 11 API ... 5

HotDocs 11 .. 5

New and Enhanced Features in the HotDocs 10 API ... 7

HotDocs 10 .. 7

HotDocs 10.1... 7

New and Enhanced Features in the HotDocs 2009 API .. 7

HotDocs 2009 ... 7

New and Enhanced Features in the HotDocs 2008 API .. 7

HotDocs 2008 ... 7

New and Enhanced Features in the HotDocs 2007 API .. 8

HotDocs 2007 ... 8

New and Enhanced Features in the HotDocs 2006 API .. 8

HotDocs 2006 ... 8

HotDocs API

iv

New and Enhanced Features in the HotDocs 2005 API .. 9

HotDocs 2005 .. 9

HotDocs 2005 SP2 ... 9

New and Enhanced Features in the HotDocs 6.2 API .. 9

HotDocs 6.2 SP1 ... 9

New and Enhanced Features in the HotDocs 6.1 API ... 10

HotDocs 6.1 .. 10

HotDocs 6.1 SP1 ... 10

About the HotDocs API ... 11

What is the HotDocs API? ... 11

Using Command-Line Options .. 13

Introduction: Command-Line Options ... 13

To use command-line options when starting HotDocs .. 13

To use command-line options when using a shortcut to start HotDocs ... 13

To use command-line options within ASSEMBLE instructions .. 14

To add command-line options to a library item ... 14

Full List of Command-Line Options ... 14

Installation Switches .. 14

Application Control Switches .. 15

Template Type Switches .. 16

Answer Initialization Switches ... 16

Interview Behavior Switches .. 17

Answer Disposition Switches ... 18

Document Disposition Switches... 19

Table of Contents

v

Automator/Filler Command Line Switches .. 19

Use Command-Line Options When Starting HotDocs .. 20

To use command-line options when starting HotDocs .. 20

Use Command-Line Options when Using a Shortcut to Start HotDocs ... 21

To use command-line options when using a shortcut to start HotDocs ... 21

Use Command-Line Options within ASSEMBLE Instructions .. 21

To use command-line options within ASSEMBLE instructions .. 21

Use Command-Line Options at File Properties .. 21

To add command-line options to a library item ... 21

Answer File .. 22

Answer Summary .. 22

Clause Name ... 23

Default Answer File .. 23

Discard Answers .. 23

Don't Brag .. 24

Edit Template.. 24

Exit HotDocs.. 24

Finish Interview Action .. 25

Hide Library ... 25

HotDocs Auto-Assemble File ... 25

HotDocs Auto-Install File ... 26

HotDocs Model.. 26

Installation File ... 26

Interview Scope ... 26

HotDocs API

vi

Keep Interview Group ... 27

Library File.. 27

Lock Answer File .. 28

Lock Library ... 28

New Answer File .. 28

No Assembly Window ... 29

No Exit ... 29

No Interview .. 29

Output File ... 30

Overlay Answer File .. 30

Paper Size... 31

Paper Tray .. 31

Print .. 32

Print Answers Only ... 32

Print Both ... 33

Print Copies ... 33

Print Duplex... 33

Print Form Only ... 34

Print Without Dialogs .. 34

Question Summary... 34

Register ... 35

Save Answers .. 35

Save Answers Prompt ... 35

Send to Plugin .. 36

Table of Contents

vii

Send to Word Processor .. 36

Show Library ... 37

Start Interview Group .. 37

Suggest Save .. 37

Suggest Save New .. 38

Suppress Installation ... 38

Suppress Unanswered Warning .. 38

Template File .. 39

Unregister .. 39

COM API .. 41

About the HotDocs COM API .. 41

About the HotDocs COM API .. 41

How do I use the HotDocs COM API in .NET? .. 42

How do I use the HotDocs Variable Mapping API? .. 42

Understand COM Events ... 44

How do I program a COM Event in Visual C#? .. 47

Enumerations .. 48

DependencyType Enumeration .. 48

HDAFFORMAT Enumeration .. 49

HDAIMENU Enumeration .. 49

HDANSWERUPLOADFORMAT Enumeration ... 50

HDASSEMBLYSTATUS Enumeration ... 50

HDAUI Enumeration .. 51

HDDirectory Enumeration .. 57

HotDocs API

viii

HDLIMENU Enumeration ... 58

HDLUI Enumeration... 58

HDMappingBackfill Enumeration .. 62

HDOUTPUTTYPE Enumeration .. 63

HDPRODUCTFLAVOR Enumeration .. 63

HDServerFileType Enumeration .. 64

HDVARTYPE Enumeration ... 64

HotDocs.Answer Object ... 65

HotDocs.Answer Object ... 65

Answer.AddMultipleChoiceValue Method ... 68

Answer.ClearAskedFlag Method .. 69

Answer.Create Method .. 70

Answer.GetRepeatCount Method .. 71

Answer.GetRepeatIndex Method ... 72

Answer.IsMultipleChoiceValueSet Method .. 72

Answer.IterateValues Method ... 73

Answer.SetRepeatIndex Method .. 75

Answer.Application Property ... 76

Answer.Name Property .. 77

Answer.RepeatCount Property.. 77

Answer.Type Property .. 77

Answer.Unanswered Property ... 78

Answer.Value Property ... 78

Answer.OnValueFoundEvent Event ... 80

Table of Contents

ix

HotDocs.AnswerCollection Object ... 82

HotDocs.AnswerCollection Object .. 82

AnswerCollection.Add Method ... 85

AnswerCollection.Close Method .. 86

AnswerCollection.Create Method .. 87

AnswerCollection.Item Method .. 87

AnswerCollection.Overlay Method .. 88

AnswerCollection.Save Method .. 89

AnswerCollection.UploadAnswerCollection Method ... 90

AnswerCollection.Application Property ... 90

AnswerCollection.Count Property ... 90

AnswerCollection.DefaultAnswerFile Property ... 91

AnswerCollection.Description Property ... 91

AnswerCollection.FileFormat Property .. 92

AnswerCollection.FileName Property ... 93

AnswerCollection.Modified Property ... 94

AnswerCollection.Title Property ... 95

AnswerCollection.XML Property ... 95

HotDocs.Application Object ... 96

HotDocs.Application Object .. 96

Application.AddUserMenuItem Method ... 101

Application.AddUserMenuItem2 Method .. 102

Application.ConvertModelToTemplate Method .. 104

Application.ConvertTemplateToModel Method .. 105

HotDocs API

x

Application.CreateTemplatePackage Method .. 105

Application.DeleteUserMenuItem Method .. 106

Application.getDefaultPath Method ... 107

Application.GetHotDocsSetting Method .. 108

Application.OpenLibrary Method .. 109

Application.PrintDocument Method .. 110

Application.PublishOnlineFiles Method .. 111

Application.PublishOnlineFiles2 Method .. 112

Application.ResolveReferencePath Method .. 113

Application.RetrieveUrlFile Method .. 113

Application.SaveDocAsPDF Method ... 114

Application.SelectMultipleTemplates Method ... 115

Application.SelectMultipleTemplates2 Method ... 117

Application.SelectTemplate Method .. 118

Application.SelectTemplate2 Method .. 120

Application.SendToWordProcessor Method ... 121

Application.SetUserInterfaceItem Method ... 122

Application.ActiveAssembly Property .. 122

Application.Assemblies Property ... 123

Application.AssemblyQueueVisible Property .. 124

Application.CanAssembleAll Property ... 125

Application.CanEditTemplates Property ... 125

Application.CommandLine Property .. 125

Application.CurrentLibraryPath Property .. 126

Table of Contents

xi

Application.Flavor Property .. 126

Application.Hwnd Property .. 127

Application.Plugins Property ... 128

Application.Version Property ... 128

Application.Visible Property ... 129

Application.AssemblyCompleteEvent Event .. 129

Application.OnAssemblyCompleteEvent Event .. 130

Application.OnAssemblyStartEvent Event .. 131

Application.OnErrorEvent Event ... 131

Application.OnLibraryInterfaceCloseEvent Event .. 131

Application.OnLibraryOpenEvent Event .. 132

Application.OnTemplateSelectedEvent Event ... 132

Application.OnUserInterfaceEvent Event .. 132

Application.OnUserMenuItemClickedEvent Event .. 133

HotDocs.Assembly Object ... 133

HotDocs.Assembly Object .. 133

Assembly.AddUserMenuItem Method .. 138

Assembly.DeleteUserMenuItem Method .. 139

Assembly.GetSaveAsExtDlg Method .. 140

Assembly.LocalBrowseDlg Method ... 141

Assembly.OpenAnswerFileDlg Method ... 141

Assembly.SelectOpenAnswerFileDlg Method ... 142

Assembly.SendToWordProcessor Method... 143

Assembly.SetUserInterfaceItem Method .. 143

HotDocs API

xii

Assembly.UseAnswerFile Method .. 144

Assembly.AnswerCollection Property .. 144

Assembly.AnswerSummaryPath Property .. 145

Assembly.Application Property ... 145

Assembly.AssemblyHandle Property .. 145

Assembly.CommandLine Property .. 146

Assembly.DocumentPath Property ... 146

Assembly.Hwnd Property .. 147

Assembly.KeepInQueue Property .. 147

Assembly.Map Property... 147

Assembly.PrintwhenComplete Property ... 148

Assembly.PromptToSaveDocument Property ... 148

Assembly.QuestionSummaryPath Property ... 148

Assembly.ShowAnswerFileDialog Property ... 149

Assembly.Status Property ... 149

Assembly.SuppressUnansweredWarning Property ... 150

Assembly.TemplateDesc Property ... 150

Assembly.TemplatePath Property .. 150

Assembly.TemplateTitle Property .. 151

Assembly.Visible Property .. 151

Assembly.OnAssemblyCompleteEvent Event.. 151

Assembly.OnAssemblyStartEvent Event .. 151

Assembly.OnCanOpenFile Event .. 152

Assembly.OnCloseAssemblyInterfaceEvent Event .. 152

Table of Contents

xiii

Assembly.OnErrorEvent Event ... 153

Assembly.OnFileOpen Event .. 153

Assembly.OnFileSave Event .. 154

Assembly.OnFileSelectEvent Event .. 154

Assembly.OnGetAnswerFileDisplayName Event .. 155

Assembly.OnGetMRUInfo Event ... 155

Assembly.OnNeedAnswerEvent Event ... 156

Assembly.OnPostCloseAnswerFile Event .. 156

Assembly.OnPostSaveDocumentEvent Event ... 157

Assembly.OnPreCloseAnswerFile Event .. 157

Assembly.OnPreSaveDocumentEvent Event ... 158

Assembly.OnUserInterfaceEvent Event .. 158

Assembly.OnUserMenuItemClickedEvent Event .. 159

Assembly.PostSaveAnswersEvent Event .. 159

Assembly.PreSaveAnswersEvent Event .. 160

HotDocs.AssemblyCollectionClass Object .. 160

HotDocs.AssemblyCollectionClass Object ... 160

AssemblyCollectionClass.Add Method .. 162

AssemblyCollectionClass.AddToQueue Method ... 162

AssemblyCollectionClass.Clear Method .. 163

AssemblyCollectionClass.FindByHandle Method .. 163

AssemblyCollectionClass.Insert Method ... 164

AssemblyCollectionClass.Item Method ... 164

AssemblyCollectionClass.Move Method ... 164

HotDocs API

xiv

AssemblyCollectionClass.Remove Method .. 165

AssemblyCollectionClass.Application Property .. 165

AssemblyCollectionClass.Count Property ... 166

HotDocs.Component Object .. 166

HotDocs.Component Object ... 166

Component.DisplayEditor Method ... 167

Component.Application Property .. 168

Component.DBName Property ... 168

Component.DialogName Property ... 169

Component.HelpText Property ... 170

Component.Name Property ... 171

Component.Prompt Property .. 171

Component.Properties Property .. 172

Component.Type Property ... 173

Component.Title Property .. 173

HotDocs.ComponentCollection Object .. 174

HotDocs.ComponentCollection Object ... 174

ComponentCollection.Create Method ... 176

ComponentCollection.CreateComponent Method .. 177

ComponentCollection.CreateVariable Method .. 178

ComponentCollection.Item Method ... 179

ComponentCollection.Open Method... 180

ComponentCollection.OpenBase Method ... 180

ComponentCollection.OpenForEdit Method .. 181

Table of Contents

xv

ComponentCollection.Application Property ... 181

ComponentCollection.Count Property .. 182

ComponentCollection.FileName Property ... 183

ComponentCollection.OnlyVariables Property... 183

ComponentCollection.ReadOnly Property ... 183

HotDocs.ComponentProperties Object ... 184

HotDocs.ComponentProperties Object... 184

ComponentProperties.Add Method ... 185

ComponentProperties.Item Method .. 185

ComponentProperties.Count Property .. 186

HotDocs.ComponentProperty Object .. 186

HotDocs.ComponentProperty Object .. 186

ComponentProperty.Name Property ... 187

ComponentProperty.ReadOnly Property .. 187

ComponentProperty.Value Property .. 188

ComponentProperty.VariantType Property ... 188

HotDocs.Dependency Object ... 188

HotDocs.Dependency Object .. 189

Dependency.Dependencies Property ... 189

Dependency.DependencyType Property .. 190

Dependency.Target Property .. 190

HotDocs.DependencyCollection Object .. 190

HotDocs.DependencyCollection Object.. 190

DependencyCollection.GetEnumerator Method ... 191

HotDocs API

xvi

DependencyCollection.Item Method ... 191

DependencyCollection.Count Property ... 192

HotDocs.Icon Object.. 192

HotDocs.Icon Object ... 192

Icon.LoadBitmap Method ... 193

Icon.LoadIcon Method ... 193

Icon.HBITMAP Property ... 194

Icon.HICON Property .. 194

Icon.index Property ... 195

Icon.maskColor Property ... 195

HotDocs.Library Object .. 195

HotDocs.Library Object .. 195

Library.Close Method.. 197

Library.New Method ... 197

Library.Open Method ... 197

Library.Save Method ... 198

Library.Application Property .. 198

Library.Description Property .. 199

Library.MainFolder Property .. 199

Library.Redraw Property .. 199

Library.Title Property ... 200

HotDocs.LibraryEntity Object ... 200

HotDocs.LibraryEntity Object .. 200

LibraryEntity.AddFolder Method .. 202

Table of Contents

xvii

LibraryEntity.AddTemplate Method .. 203

LibraryEntity.Item Method .. 203

LibraryEntity.Remove Method ... 204

LibraryEntity.Application Property ... 204

LibraryEntity.Count Property ... 204

LibraryEntity.Description Property ... 204

LibraryEntity.ID Property ... 205

LibraryEntity.IsFolder Property .. 205

LibraryEntity.OverlayIndex Property ... 205

LibraryEntity.Parent Property ... 205

LibraryEntity.TemplateFullPath Property ... 206

LibraryEntity.TemplatePath Property .. 206

LibraryEntity.Title Property ... 206

HotDocs.Plugin Object ... 207

HotDocs.Plugin Object ... 207

Plugin.CLSID Property .. 208

Plugin.Description Property ... 208

Plugin.priorityClass Property ... 209

Plugin.priorityIndex Property... 210

HotDocs.PluginsClass Object ... 211

HotDocs.PluginsClass Object... 211

PluginsClass.Item Method .. 212

PluginsClass.Register Method ... 212

PluginsClass.Unregister Method .. 213

HotDocs API

xviii

PluginsClass.Count Property .. 214

HotDocs.TemplateInfo Object ... 215

HotDocs.TemplateInfo Object .. 215

TemplateInfo.Close Method .. 216

TemplateInfo.Open Method .. 216

TemplateInfo.ComponentCollection Property ... 217

TemplateInfo.Dependencies Property ... 217

TemplateInfo.EffectiveComponentFile Property .. 217

TemplateInfo.PointedToComponentFile Property .. 218

TemplateInfo.PrimaryComponentFile Property ... 218

TemplateInfo.RecursiveDependencies Property .. 218

HotDocs.VarMap Object .. 218

HotDocs.VarMap Object ... 219

VarMap.HDVariablesAdd Method ... 222

VarMap.HDVariablesItem Method .. 222

VarMap.MappingAdd Method ... 223

VarMap.MappingAdd2 Method ... 223

VarMap.MappingAddEx2 Method... 224

VarMap.MappingItem Method ... 224

VarMap.MappingItem2 Method .. 225

VarMap.MappingRemove Method ... 226

VarMap.OpenComponentFile Method .. 226

VarMap.OpenMapFile Method ... 226

VarMap.SaveMapFile Method ... 227

Table of Contents

xix

VarMap.ShowUserInterface Method .. 227

VarMap.SourceNamesAdd Method .. 228

VarMap.SourceNamesAdd2 Method ... 229

VarMap.SourceNamesItem Method ... 229

VarMap.SourceNamesItem2 Method... 230

VarMap.SourceNamesRemove Method .. 231

VarMap.Application Property .. 231

VarMap.DefaultBackfill Property .. 232

VarMap.HDVariablesCount Property .. 232

VarMap.MappingCount Property .. 232

VarMap.MapTextAndMultipleChoice Property .. 233

VarMap.ShowBackfillColumn Property .. 233

VarMap.SourceNamesCount Property... 233

Answer Source API .. 235

About the HotDocs Answer Source API ... 235

What is an answer source integration? ... 235

Answer Source Integration Example ... 235

How do I create an answer source integration? .. 241

HotDocs Answer Source API .. 243

HotDocs Answer Source API .. 244

BeginUpdateBatch Function .. 246

ChooseMultipleRecords Function ... 246

ChooseRecord Function .. 247

CloseRecord Function... 248

HotDocs API

xx

CommitUpdates Function ... 249

EndUpdateBatch Function .. 250

GetChosenRecords Function ... 250

GetField Function ... 251

GetFieldW Function ... 252

GetFieldAccess Function.. 254

GetFieldAccessW Function ... 255

GetFieldName Function ... 256

GetFieldNameW Function ... 257

IsAvailable Function .. 258

OpenRecord Function .. 259

SetField Function .. 260

SetFieldW Function .. 261

SupportsBackfill Function ... 263

Plug-in API ... 265

About the HotDocs Plug-in API .. 265

What is a HotDocs plug-in? ... 265

How do I create a HotDocs plug-in? .. 266

How do I create a HotDocs plug-in using Visual C#? ... 267

ILibraryWindowContextMenuExtension Interface ... 270

ILibraryWindowContextMenuExtension Interface ... 270

ContextCommand Function ... 272

ContextGetMenuEntry Function ... 273

ContextGetMenuTitle Function .. 274

Table of Contents

xxi

ContextInitialize Function ... 275

ContextLibraryInitialized Function ... 276

ILibraryWindowFileHandlerExtension Interface .. 276

ILibraryWindowFileHandlerExtension Interface ... 276

Assemble Function .. 279

Edit Function .. 280

Initialize Function ... 280

LibraryInitialized Function ... 281

RegisterFileType Function ... 282

ILibraryWindowIconProvider Interface ... 283

ILibraryWindowIconProvider Interface .. 283

Initialize Function ... 285

LibraryInitialized Function ... 285

UpdateLibraryEntry Function ... 286

ILibraryWindowMenuExtension Interface ... 286

ILibraryWindowMenuExtension Interface ... 286

Command Function ... 289

DisplayMenuInitialize Function ... 290

GetMenuEntry Function ... 291

GetMenuTitle Function .. 292

Initialize Function ... 292

LibraryInitialized Function ... 293

IOutputPlugin Interface .. 294

IOutputPlugin Interface ... 294

HotDocs API

xxii

DocumentAssembled Function .. 297

GetPlugInfo Function .. 298

Initialize Function ... 298

LibraryInitialized Function ... 299

CommandId Property ... 300

IPluginPreferences Interface ... 300

IPluginPreferences Interface .. 300

IPluginPreferences Function .. 302

Contact HotDocs Sales and Support ... 303

HotDocs Technical Support .. 303

Outside the European Union: .. 303

Inside the European Union: .. 303

HotDocs Sales Support ... 303

Outside the European Union: .. 304

Inside the European Union: .. 304

Documentation Feedback .. 305

Glossary ... 307

Index ... 323

1

Help Topics for the HotDocs Application Programming
Interface (API)
This Help file is a technical guide to integrating HotDocs with other software applications. It is written with
the assumption that you have experience in software development and an understanding of a high-level
programming language such as Visual Basic, C++, or C#. Because the type of application you integrate
with HotDocs and the extent of that integration will vary from project to project, this file provides only
broad guidelines on how to accomplish your task. You must adapt this information to the requirements of
your project.

Organization of the Help File

Content within the help file is categorized into several areas:

1. New Features and Enhancements: What's new in HotDocs 11 (and prior versions)
2. About HotDocs API: Conceptual information about the role HotDocs API plays.
3. Using Command Line Option: A reference guide to the Command Line Options.
4. COM API: A reference guide to the COM APIs, arranged by class.
5. Answer Source API: A reference guide to the Answer Source APIs.
6. Plug-in API: A reference guide to the Plug-in API.

Find Topics in the Help File

To use the help file, you have several options:

• Click the Index tab to view a listing of all the topics in the help file, referenced by index keyword.
• Enter a search term or phrase in the Search box and click Search to view topics that contain your

search phrase. If the search phrase is found, a Search Results list is displayed, showing the
different topics that meet your criteria.

See Form a Help Search Query for detailed instructions on creating a search query.

Other Help Resources

There are four buttons in the navigation bar where you can access the following options

• Hide: Hide the left hand pane, the button then changes to the Show button.

HotDocs API

2

• Back: Go back to the previous page.

• Print: View the Print dialog box to print a copy of the current page.

• Options: Show the options drop-down menu where you can choose from: Hide Tabs,
Back, Forward, Home, Stop, Refresh, Internet Options, Print, and Search Highlights Off.

For additional help using HotDocs, you can view the online HotDocs Wiki. See
http://wiki.hotdocs.com.

When you view a topic in a search results list, the help system highlights your search terms. If
you want to remove these highlights, select Search Highlights Off from the Options menu and
refresh the page. To turn them back on again select Search Highlights On and refresh the page..

http://wiki.hotdocs.com/

3

Copyright Information

Copyright

Copyright © 1996-2018 AbacusNext.

All rights reserved. No part of this product may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language in any form by any means without the express written
permission of HotDocs Limited. (“HotDocs”).

Warranty Information

HotDocs makes no representations or warranties with respect to the contents or use of this product and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular
purpose. Information in this document is subject to change without notice and does not represent a
commitment on the part of HotDocs.

Government Use

Use, duplication, or disclosure by the Federal Government is subject to restrictions as set forth in FAR
clauses 52.227--14, “Rights in Data--General”; 52.227--19, “Commercial Computer Software--Restricted
Rights”; and subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software clause DFAR
252.227--7013; and the limitations set forth in the standard commercial license agreement for this
software. Unpublished rights are reserved under the copyright laws of the United States.

Trademark Information

HotDocs is a registered trademark of HotDocs Limited. Other product names may be trademarks or
registered trademarks of their respective companies.

5

New Features and Enhancements

New and Enhanced Features in the HotDocs 11 API

HotDocs 11

For HotDocs 11 this help file has undergone multiple format changes, see Get Help Using HotDocs
Desktop API for information on navigating the new interface.

Examples within the help file now use Visual C# as the default programming language.

New Features

Command-Line options

The following two command-line options have been added:

• Don't brag (/db)
• Send to plugin (/sto)

Model Document is now called HotDocs Models. This has changed the name of the command-line option
from Model Document to HotDocs Model but the option itself remains /mo.

COM API

HDServerFileType Enumumeration was added.

Dependency Type Enumeration: The following directories were added:

• MissingFileDependency
• AdditionalTemplateDependency

HDAUI Enumeration: The following values were added:

• AUIDLGRESOURCEPANE
• AUIFORMRESOURCEPANE
• AUIVARSHEETRESOURCEPANE
• AUIEOISENDTOOUTPUT
• AUIFILESELECTOPENANSWERS
• AUIVIEWDIALOGNAVIGATIONBAR
• AUIVIEWENDOFINTERVIEWDIALOG

HotDocs API

6

• AUIVIEWEXPANDALL
• AUIVIEWCOLLAPSEALL
• AUIVIEWPREVIEWTAB
• AUIASMQUEUE

HDLUI Enumeration: The following values were added:

• LUIVIEWTITLES
• LUIVIEWFILENAMES
• LUIVIEWEXPANDALL
• LUIVIEWCOLLAPSEALL
• LUIVIEWTABSATTOP
• LUIVIEWMARKUPVIEW
• LUITEMPLATEPRINT
• LUITEMPLATECONVERTTOMODEL
• LUITEMPLATECONVERTFROMMODEL
• LUITOOLSTEMPLATEMANAGER
• LUITOOLSAUTOMATOR
• LUIHIDDENDATAREMOVER

HotDocs.Application Object: The following properties and events were added:

• CreateTemplatePackage Method
• PublishOnlineFiles2 Method
• AssemblyCompleteEvent Event
• OnLibraryOpenEvent Event

HotDocs.Assembly Object: The following events were added:

• PostSaveAnswersEvent Event (replaces OnPostSaveAnswersEvent Event)
• PreSaveAnswersEvent Event (replaces OnPreSaveAnswersEvent Event)

Plugins

New HotDocs Plug-in APIs were added:

• IOutputPlugin interface
• IPluginPreferences Interface

New Features and Enhancements

7

New and Enhanced Features in the HotDocs 10 API

HotDocs 10

• Default folders and registry keys: The API documentation has been updated to reflect the new
default file folders and registry keys used by HotDocs 10.

• New HotDocs product names: The HDPRODUCTFLAVOR Enumeration has been updated to
reflect the new HotDocs product names. Also, the Application.CanAssembleAll and
Application.CanEditTemplates properties were added to help integrations determine what features
are available in the instance of HotDocs in use.

HotDocs 10.1

• Template Dependency API: The new TemplateInfo object lets you determine which files are
required by a given template. For example, if you create a source control integration, you could
use this new API to make sure that when you check a file out of source control, you also get all of
its dependent files. The Dependency and DependencyCollection objects complete the set of new
objects that make up the template dependency API.

New and Enhanced Features in the HotDocs 2009 API

HotDocs 2009

• Answer Source API: New functions have been added to support Unicode strings in the answer
source API: GetFieldW , GetFieldAccessW , GetFieldNameW , and SetFieldW.

• HDAFFORMAT Enumeration: New values (PreHD2009Format and HD2009Format) have been
added, which correspond to the two answer file formats that HotDocs 2009 can write.

New and Enhanced Features in the HotDocs 2008 API

HotDocs 2008

HotDocs API

8

• Model Document Support: New functions have been added to the Application object to enable
converting templates to Model Documents, and Model Documents to templates. (See
ConvertModelToTemplate and ConvertTemplateToModel.)

New and Enhanced Features in the HotDocs 2007 API

HotDocs 2007

• Command-Line Options: HotDocs now includes two new command-line options—Start Interview
Group (/sig) and Keep Interview Group (/kig). These options are used to control which questions
are asked when assembling a group of related documents; specifically, they keep questions that
are already answered in one interview from being asked in subsequent interviews.

New and Enhanced Features in the HotDocs 2006 API

HotDocs 2006

• ComponentCollection Object: The _ComponentCollection4 interface was added, which includes
methods and properties for creating and editing various types of HotDocs components. This
interface, along with the new ComponentProperties object, allows you to create and customize
virtually any HotDocs component.

• ComponentProperties Object: This new object is a collection of ComponentProperty objects, which
allows you to view or make changes to settings of components in an open component file. (Click
here for a list of properties for various HotDocs component types.)

• ComponentProperty Object: This new object represents a single property (setting) of a HotDocs
component, such as a variable name or prompt.

• Component Object The _Component3 interface was added, which includes a new property
(Properties) to view or change the properties of the component. It also includes a method
(DisplayEditor) for displaying a component editor.

• HDVARTYPE Enumeration: The HDVARTYPE enumeration includes a number of additional types
for use when creating and interacting with HotDocs components.

• Command-Line Options: A new command-line option, Edit Template (/ed), allows you to more
easily open a HotDocs template for editing.

New Features and Enhancements

9

New and Enhanced Features in the HotDocs 2005 API

HotDocs 2005

• Application object: The following two methods were added:

• RetrieveUrlFile: Retrieves a file from a given URL.

• AddUserMenuItem2: Allows you to add custom menu items to the HotDocs library menus.

• Library object: The following property was added:

• Redraw: Refreshes the library window.

HotDocs 2005 SP2

• Answer Source Integrations: New functions have been added to improve answer source
integrations. These functions allow answers to be back-filled (written back to the answer source) and
they also allow users to select multiple records in spreadsheet dialogs. (See What is an answer
source integration?.)

• HotDocs Plug-ins: A number of changes were made to the HotDocs plug-in architecture. These
changes include different parameters in existing interfaces and new methods for registering plug-
ins. Although the interfaces still have the same names, the IIDs have changed and plug-ins created
for use with earlier versions of HotDocs will not work with HotDocs 2005 SP2 unless they are
modified and registered with HotDocs 2005 SP2. (See What is a HotDocs plug-in?)

• Variable Mapping: New methods were added to the HotDocs Variable Mapping interface to allow
mapping of Text variables to Multiple Choice variables. The mapping interface can also now allow
answers to be written back (or back-filled) to the original answer source. (See HotDocs.VarMap
Object.)

New and Enhanced Features in the HotDocs 6.2 API

HotDocs 6.2 SP1

• HotDocs Plug-ins: You can now create HotDocs plug-ins to extend the library window user
interface. Plug-ins can be used to add menus and items to the library menu, create shortcut menus,
and customize the way HotDocs assembles and edits files. (See How do I create a HotDocs plug-in?
for more information.)

HotDocs API

10

New and Enhanced Features in the HotDocs 6.1 API

HotDocs 6.1

• ComponentCollection Object: The _ComponentCollection2 interface was added to the
ComponentCollection object. This interface includes a method for creating a new, empty
component file (Create) and a method for creating a new variable in a component file
(CreateVariable).

HotDocs 6.1 SP1

• Application Object: The _Application2 interface was added to the Application object. This
interface includes a new method for saving documents as PDF files: SaveDocAsPDF.

• Application Object: A new method was added to the Application object for publishing files for
use with HotDocs Online Server (HotDocs Server): PublishOnlineFiles.

• Assembly Object: The _Assembly2 interface was added to the Assembly object. This interface
includes a new property that controls whether HotDocs will prompt to save a copy of the
assembled document at the end of the assembly: PromptToSaveDocument.

11

About the HotDocs API

What is the HotDocs API?

The HotDocs Application Programming Interface (API) lets you integrate HotDocs document assembly
software functionality into your own application. For example, by integrating your application with
HotDocs, you could allow your users to assemble HotDocs text and form documents using your
application’s data. Although HotDocs can be integrated with virtually any kind of software, it is most often
used with database applications, case managers, litigation support systems, infobases, address books, and
other similar applications.

There are three types of people involved in the integration process:

• Integrator: The most basic role of the integrator is to make data from your application available
to HotDocs using the API. In addition, the integrator may also provide a way for HotDocs to be
launched (visible or hidden) from within your application to assemble documents.

• Template Developer: The template developer's role is to create one or more HotDocs templates,
which might use information from your application. If information will be pulled from your
application, the template developer can use the HotDocs Variable Mapping dialog box to map
fields in your application to HotDocs variables in each template.

• End User: The role of the end user is to assemble a text or form document using information
from your application or answers entered during an interview. Depending on the type of
integration you create, the user may or may not need to be actively involved.

This help file focuses primarily on the role of the integrator, or software developer. The roles of template
developers and end users are discussed only to show how the integrator's work helps them perform their
tasks.

If you are unfamiliar with HotDocs and its terminology, please refer to the Glossary to see a list
of concepts and terms associated with HotDocs.

Integration Types

The HotDocs API provides methods for creating several types of integrations. Using the COM API, your
application can act as the main user interface for your users. For example, it can launch HotDocs, tell it
which template to use, and provide it with data it needs to assemble a document.

Another type of integration you can create is an answer source integration, which is a special DLL file that
HotDocs can use to query your application for the data it needs to assemble a document. When using an
answer source integration, the user is more involved in selecting the template and determining what
information from your application should be used.

HotDocs API

12

HotDocs also provides a plug-in API, which lets you to create a plug-in that adds a new menu to the
HotDocs library window, overlays custom icons on top of template icons in the library, or otherwise
extends the menus and functionality of the HotDocs library window.

Finally, the Variable Mapping API allows you to create associations between data fields in your application
and HotDocs variables.

13

Using Command-Line Options

Introduction: Command-Line Options

You can use command-line options to control the way HotDocs assembles text and form documents.
Most options can be placed on any command line that causes HotDocs to run. They are case-sensitive
and must be typed in lowercase letters. If the option requires you to include a full file path, you must
enclose the file path with quotation marks.

You can use command-line options in different ways, including specifying the options at the command
line, at the Properties dialog box of a given template, and for the program file's shortcut.

Most command-line options control certain aspects of document assembly. For example, you can specify
an option that always prints an assembled document once it has been sent to the word processor.

When HotDocs is started from the command line, it will continue to run, even after the
processing of the command-line request is completed. To tell HotDocs to close after processing
the command-line request, use the Exit HotDocs option.

If you are using multiple options on a single command line, you must separate each option with a
space character. If the command line includes space characters, you must enclose the path in
quotation marks.

To use command-line options when starting HotDocs

1. Choose Run from the Start menu. The Run dialog box appears.
2. Type "C:\Program Files\hotdocs.exe" (including the quotation marks) followed by a space and

the options you want in the Open field. For example:

"C:\Program Files\HotDocs\Hotdocs.exe" /tf=demoempl.docx

3. Click OK. If HotDocs is not already running, it loads and then performs the command-line
instructions. If HotDocs is already running, it performs the command-line instructions.

To use command-line options when using a shortcut to start HotDocs

1. Locate the HotDocs program file shortcut. (A shortcut is an icon on the desktop or Start menu
that a user can click to quickly access a program.)

2. Right-click the icon and select Properties from the shortcut menu. The program item's
Properties dialog box appears.

3. Select the Shortcut tab.
4. In the Target field, enter a space after the executable (.EXE) file and type the options you want.

HotDocs API

14

To use command-line options within ASSEMBLE instructions

1. Open the library you need at the HotDocs library window.
2. Select the template with the ASSEMBLE instruction you wish to add a command-line option to,

and click Edit.
3. Double click on the ASSEMBLE instruction.
4. The Other Field dialog box will open.
5. In the Template to assemble field, following the file name, type a space and the command-line

options you want to use. For example:

Collection Letter.docx /sa

To add command-line options to a library item

1. Open a library at the HotDocs library window.

2. Select the library item and click the Properties button to open the Item Properties dialog
box.

3. In the File name field, following the file name, type a space and the command-line options you
want to use. For example:

/af="C:\Documents and Settings\Username\My
Documents\HotDocs\Answers\jalvey.anx"

Full List of Command-Line Options

Below is a list of all the available command-line options grouped by use. For more information on any
option follow the link to its full description.

Installation Switches

These switches can be used to modify HotDocs installation and registration.

Option Description

Mutually
Exclusive* /if=""

The Installation File option specifies an alternate installation script to execute in
lieu of Hotdocs.inx , which sets up a workstation for individual HotDocs users. This
file must conform to the HotDocs Installation Script DTD

Using Command-Line Options

15

/si
The Suppress Installation option keeps HotDocs from installing itself on a per-
user basis. (Normally, HotDocs runs a per-user installation the first time a user
starts HotDocs.)

Mutually
Exclusive*

/regserver The Register option registers the HotDocs COM servers in the registry.
/unregserver The Unregister option unregisters the HotDocs COM servers from the registry.

Application Control Switches

These switches are used to feed instructions to the HotDocs executable from the command line.

Option Description

Mutually
Exclusive*

/tf="" The Template File option causes HotDocs to assemble a document using the
specified template or clause library.

/ed="" The Edit Template option causes HotDocs to edit a template using the specified
template or clause library file.

/ha="" The HotDocs Auto-Assemble File option causes a document to be assembled
using the specified auto-assemble (.HDA) file.

/hi=""

The HotDocs Auto-Install File option causes the template set in the specified
auto-install (.HDI) file to be installed. During this process, HotDocs prompts the
user for any required information it needs to install the template library to the
correct location.

/lf=""

The Library File option allows you to start HotDocs and open a specific library.

If HotDocs is already running, it opens the library specified by the path and file
name.

/ll

The Lock Library option locks the current library and prevents the user from
editing the library or its contents. Specifically, when HotDocs is launched and the
library appears, users can select templates and assemble documents from them.
They can also view the answer library and change user preferences at the HotDocs
Options dialog box. All other options are unavailable.

/ex
The Exit HotDocs option closes HotDocs when both of the following conditions
are met: 1) there are no documents waiting to be assembled, and 2) all other
programs are finished using HotDocs.

/nx The No Exit option allows the integration to keep an instance of HotDocs running
without displaying any interface.

/db The Don't Brag option stops HotDocs from displaying the splash screen when it
opens.

Mutually
Exclusive* /hl

The Hide Library option causes HotDocs to assemble a document without first
displaying the HotDocs template library. The user will not see the template library
window at all during assembly. It is most commonly used by integrators who are
using HotDocs with a third-party program and want to start an assembly without
first displaying the template library window.

HotDocs API

16

/sl
The Show Library option forces HotDocs to display the template library if it is
currently not showing. This is useful if you are integrating HotDocs with another
program and you have hidden the library using the Hide Library option.

Template Type Switches

When a template is referred to by HotDocs, the template type is inferred from the file name extension.
However, in some cases additional information is required so HotDocs knows how to process the
requested template. These mutually exclusive switches (usable in combination with the /tf="" switch, on
library items, or in INSERT or ASSEMBLE instructions) help with that. This switch (usable in combination
with the /tf="" switch, on library items) can help with that.

Option Description

Mutually
Exclusive*

/mo
The HotDocs Model command-line option indicates that the file referenced in the
library is a HotDocs Model. When you select the document in the library and click
Assemble, HotDocs will create an interview for the model.

/cl="name"

The Clause Name option is used by HotDocs to identify which clause component
is associated with an item in a clause library. It is also used by HotDocs to process
INSERT instructions during the assembly process. Generally speaking, developers
should never have to modify this option unless they are converting clauses from
one file format to another. Likewise, end users may see the Clause Name option
while working with clauses at a clause library or during assembly, but should not
modify it.

Answer Initialization Switches

These switches are used to initialize & define the answer set that will be used for an interview or assembly.
They can be used in combination with the /tf="" switch and on library items.

Option Description

/df=""
The Default Answer File option specifies a default answer file that is used to
"seed" any answer file created during assembly. When a new answer file is created,
it is automatically loaded with answers from the default answer file.

Mutually
Exclusive* /af=""

The Answer File option is useful if you want to use a specific answer file when you
assemble a document. The option does two things: 1) when a template is selected
for assembly, it immediately opens the specified answer file without displaying the
Answer File dialog box, and 2) it sets the value for path and file name as the
current answer file name to be used when answers are saved. If the specified
answer file doesn't exist, it will be created when the user saves the answers

Using Command-Line Options

17

/na[=""]

The New Answer File option specifies a new, untitled answer file to be used when
assembling a given document. This option causes HotDocs to suppress the Answer
File dialog box, which normally appears before assembly. Specifying a path and file
name is optional. If a file name is specified, it will be used for the new answer file. If
an answer file with that same name already exists, HotDocs overwrites the existing
file with the new one. If no file name is specified, HotDocs displays a Save Answer
File dialog box at the end of assembly.

/ov=""

The Overlay Answer File option causes HotDocs to take answers from a specific
answer file and overlay them in the current answer file. For example, if you have
specific information about a client that can be used in assembling multiple
documents, you can save just that information in an overlay answer file and then
use the Overlay Answer File option to force HotDocs to use those answers when
assembling a document. All answers entered during assembly (including overlaid
answers) are saved to the current answer file—not the overlay answer file—thus
maintaining the integrity of the overlay answer file. An overlay answer file is loaded
after the regular answer file so that the answers contained therein can overlay
existing answers.

Interview Behavior Switches

These switches are used to modify the default behavior of the assembly window. They can be used in
combination with the /tf="" switch and on library items.

Option Description

Mutually
Exclusive*

/nw The No Assembly Window option causes HotDocs to assemble a document
without displaying the assembly window.

/ni

The No Interview option removes the Interview tab from the assembly window,
and,by default, displays the assembled document in the Document Preview or
Form Document tab (depending on whether you are assembling a text or form
document). To present a correctly assembled document, you should specify an
answer file using the Answer File option. Otherwise, the document will be
assembled without any answers.

/fia

When a user starts assembling a template that has the Finish Interview Action
command-line option applied, HotDocs will complete the action defined in
HotDocs Options—either display the assembled document at the Document tab of
the assembly window or send the document to the word processor or HotDocs
Filler.

/la

The Lock Answer File option prevents users from opening, closing, and saving
answer files during document assembly. If it is the only option used, however, users
can choose an answer file before assembly and save any answers they have entered
after assembly.

/sig

The Start Interview Group option is used to control which questions are asked
when assembling a group of related documents, specifically, it keeps questions that
are already answered in one interview from being asked in subsequent interviews.
It must be used with the Keep Interview Group option, which must be assigned to
each subsequent template within the group.

HotDocs API

18

/kig

The Keep Interview Group option is used to control which questions are asked
when assembling a group of related documents, specifically, it keeps questions that
are already answered in one interview from being asked in subsequent interviews.
It must be used with the Start Interview Group option, which must be assigned to
each subsequent template within the group.

/is=u

The Interview Scope option allows you to ask only those dialogs that contain
questions not answered by an existing answer file. This may be useful, for example,
if you have some answers you are retrieving from a database that you don't want
the user to change. Using this option will ask only those questions that don't have
answers. Cannot be used with the Start Interview Group option or the Keep
Interview Group option.

/sw

The Suppress Unanswered Warning option keeps HotDocs from displaying the
warning dialog box that appears when the user attempts to either print, save, or
send the assembled document to the word processor and the assembled
document still contains unanswered questions.

Answer Disposition Switches

These mutually exclusive switches can be used to dictate what happens to answers that were modified
while the assembly window was open or during assembly. They can be used in combination with the
/tf="" switch and on library items.

Option Description

Mutually
Exclusive*

/sa

The Save Answers option forces an answer file to be saved at the end of an
assembly. If using an existing answer file, any answers entered during the interview
will be saved automatically. If using a new, untitled answer file, HotDocs will force
the user to specify an answer file name.

/sap

The Save Answers Prompt option, which is used in connection with an ASSEMBLE
instruction, prompts the user to save an answer file after completing an interview.
Regardless of whether the user uses an existing answer file during assembly, when
the user finishes that assembly, HotDocs prompts to save the answers in a different
file.

/ss

The Suggest Save option, which is used in connection with an ASSEMBLE
instruction, causes HotDocs to ask users after assembly of a document has finished
if they want to save answers entered during the interview in an answer file.
Specifically, if the user has assembled a document and made changes to an existing
answer file, HotDocs prompts to save the answers to that file. If saving a new,
untitled file, HotDocs allows the user to specify the new answer file name.

/ssn

The Suggest Save New option, which is used in connection with an ASSEMBLE
instruction, causes HotDocs to ask if answers should be saved in a new answer file
after assembly of a document has finished. Regardless of whether the user is using
an existing answer file during assembly, when the user finishes that assembly,
HotDocs gives the user the option of saving the answers in a new answer file.

/da
The Discard Answers option prevents the user from saving answers after the
document has been assembled. This option is useful when you know you will never
want to save the answers you use with a particular template (for example, a fax

Using Command-Line Options

19

cover sheet), and you don't want HotDocs to ask about saving the answers when
you close the assembly window. However, the user can save the answer file during
the interview.

Document Disposition Switches

These switches can be used to dictate what happens to a document after its assembly is complete. They
can be used in combination with the /tf="" switch and on library items.

Option Description

/of=""

The Output File option causes HotDocs to assemble the document and save it
using the file name specified. If you are using the Answer Summary or Question
Summary options, the Output File option specifies the name for either of those
generated documents. This is useful if you know you want to save an assembled
document every time assembly of that document finishes.

/as
The Answer Summary option is used with the Output File option to specify the
path and file name for saving an answer summary. It is useful if you want a certain
template to always generate an answer summary document.

/qs
The Question Summary option is used with the Output File option to specify the
path and file name for saving a question summary. It is useful if you want a certain
template to always generate a question summary document.

/sto The Send to Plugin option sends the assembled document to a specified output
plugin.

/stw

The Send to Word Processor option sends the assembled document to the word
processor once the user closes the assembly window. This is useful if you know
you always want to view the assembled document using the word processing
program.

Automator/Filler Command Line Switches

These switches can be used to dictate how HotDocs will print form templates from HotDocs
Automator/Filler.

Option Description

/pr
The Print option causes HotDocs to print a copy of the assembled text or form
document once the user closes the assembly window. This is useful if you know
you will always need to print a copy of a specific assembled document.

/pw
The Print Without Dialogs option causes HotDocs to bypass the Print dialog box
and print the form using the current printer. The form is printed when the user
clicks the Print Document button at the assembly window.

/ps=""

The Paper Size option selects the specified paper size when the user prints a copy
of the form template or document. The effect is the same as manually setting the
page size from the Print dialog box. This option works with form templates and
documents only.

/pt="" The Paper Tray option causes a specified printer paper tray or manual feed option

HotDocs API

20

to be used when printing a form document from HotDocs Filler. Paper tray values
that can be used include manual, upper, lower, and so forth. For a complete list of
acceptable values, either at the assembly window or at the HotDocs Filler window,
click Document Properties > Printing (File menu) and click the Paper Source
drop-down button.

/pc=n

The Print Copies option specifies the number of copies that should be printed
when the user prints the form document (type in the number of copies needed
instead of the letter n). This number should appear in the Number of Copies field
at the Print dialog box.

/pd

The Print Duplex option sets the duplex printing option for a given form
document. It prints the document Double-Sided, Side-to-Side, as if that option
were selected at the Printing Properties dialog box (which you can access by
clicking Document Properties > Printing (File menu).) When the user prints the
form document, it is printed using this option.

Mutually
Exclusive*

/pa

The Print Answers Only option selects the Answers Only (Use Preprinted Form)
option at the Print dialog box. Then, when the user prints the assembled form
document, it prints only the form's answers and not the underlying static text. This
allows you to use preprinted forms.

/po
The Print Form Only option selects the Form Only (Blank Form) option at the
Print dialog box. Then, when the user prints the form document, it prints a blank
copy of the form without answers.

/pb
The Print Both option selects the Form with Answers option at the Print dialog
box. Then, when the user prints the form document, the current form and its
answers are printed.

*Mutually exclusive switches will not show an error if used in the same command-line but will
cause unpredictable behavior. We recommend you do not use these switches together.

Use Command-Line Options When Starting HotDocs

To use command-line options when starting HotDocs

1. Choose Run from the Start menu. The Run dialog box appears.
2. Type "C:\Program Files\hotdocs.exe" (including the quotation marks) followed by a space and

the options you want in the Open field. For example:

"C:\Program Files\HotDocs\Hotdocs.exe" /tf=demoempl.docx

3. Click OK. If HotDocs is not already running, it loads and then performs the command-line
instructions. If HotDocs is already running, it performs the command-line instructions.

Using Command-Line Options

21

Use Command-Line Options when Using a Shortcut to Start HotDocs

To use command-line options when using a shortcut to start HotDocs

1. Locate the HotDocs program file shortcut. (A shortcut is an icon on the desktop or Start menu
that a user can click to quickly access a program.)

2. Right-click the icon and select Properties from the shortcut menu. The program item's
Properties dialog box appears.

3. Select the Shortcut tab.
4. In the Target field, enter a space after the executable (.EXE) file and type the options you want.

Use Command-Line Options within ASSEMBLE Instructions

To use command-line options within ASSEMBLE instructions

1. Open the library you need at the HotDocs library window.
2. Select the template with the ASSEMBLE instruction you wish to add a command-line option to,

and click Edit.
3. Double click on the ASSEMBLE instruction.
4. The Other Field dialog box will open.
5. In the Template to assemble field, following the file name, type a space and the command-line

options you want to use. For example:

Collection Letter.docx /sa

Use Command-Line Options at File Properties

To add command-line options to a library item

1. Open a library at the HotDocs library window.

2. Select the library item and click the Properties button to open the Item Properties dialog
box.

3. In the File name field, following the file name, type a space and the command-line options you
want to use. For example:

HotDocs API

22

/af="C:\Documents and Settings\Username\My
Documents\HotDocs\Answers\jalvey.anx"

Answer File

/af="path and file name"

The Answer File option is useful if you want to use a specific answer file when you assemble a document.
The option does two things: 1) when a template is selected for assembly, it immediately opens the
specified answer file without displaying the Answer File dialog box, and 2) it sets the value for path and
file name as the current answer file name to be used when answers are saved. If the specified answer file
doesn't exist, it will be created when the user saves the answers.

When using an existing answer file, you can retrieve an answer file from a location on a Web server by
specifying a URL for the path and file name (for example, /af=http://www.yoursite.com/answers.anx). (You
cannot, however, save an answer file back to the server.)

You cannot assign the Answer File (/af) option to a HotDocs Auto-Assemble file.

If using this option at the command line, include the Template File (/tf) option.

Answer Summary

/as

The Answer Summary option is used with the Output File option to specify the path and file name for
saving an answer summary. It is useful if you want a certain template to always generate an answer
summary document.

The Answer Summary option is normally used with the No Assembly Window and Answer File options,
which cause HotDocs to automatically create and save the answer summary document without displaying
the assembly window.

Answer summaries are saved in HTML format.

If using this option at the command line, include the Template File (/tf) and Output File (/of)
options. If using this option at the library properties, include the Output File (/of) option.

Using Command-Line Options

23

Clause Name

/cl=clausename

The Clause Name option is used by HotDocs to identify which clause component is associated with an
item in a clause library. It is also used by HotDocs to process INSERT instructions during the assembly
process. Generally speaking, developers should never have to modify this option unless they are
converting clauses from one file format to another. Likewise, end users may see the Clause Name option
while working with clauses at a clause library or during assembly, but should not modify it.

Default Answer File

/df="path and file name"

The Default Answer File option specifies a default answer file that is used to "seed" any answer file
created during assembly. When a new answer file is created, it is automatically loaded with answers from
the default answer file.

When specified, it does not need to have the same file name as the template's component file, nor does it
need to be saved in the same folder as the component file. However, the default answer file name should
be different from the current answer file name. Also, when using an existing default answer file, you can
retrieve it from a location on a Web server by specifying a URL for the path and file name (for example,
/df=http://www.yoursite.com/defaultanswers.anx).

If using this option at the command line, include the Template File (/tf) option.

Discard Answers

/da

The Discard Answers option prevents the user from saving answers after the document has been
assembled. This option is useful when you know you will never want to save the answers you use with a
particular template (for example, a fax cover sheet), and you don't want HotDocs to ask about saving the

HotDocs API

24

answers when you close the assembly window. However, the user can save the answer file during the
interview.

To disable all answer file usage (saving, selecting new, and so forth) during a given assembly,
use the Lock Answer File (/la) option.

If using this option at the command line, include the Template File (/tf) option.

Don't Brag

/db

The Don't Brag option stops HotDocs from displaying the splash screen when it opens.

Edit Template

This option was introduced with the release of HotDocs 2006.

/ed="path and file name"

The Edit Template option causes HotDocs to edit a template using the specified template or clause
library file.

Exit HotDocs

/ex

The Exit HotDocs option closes HotDocs when both of the following conditions are met: 1) there are no
documents waiting to be assembled, and 2) all other programs are finished using HotDocs.

Using Command-Line Options

25

Finish Interview Action

/fia

When a user starts assembling a template that has the Finish Interview Action command-line option
applied, HotDocs will complete the action defined in HotDocs Options—either display the assembled
document at the Document tab of the assembly window or send the document to the word processor or
HotDocs Filler.

If using this option at the command line, include the Template File (/tf) and Answer File (/af)
options. If using this option at the library properties, include the Answer File (/af) option.

Hide Library

/hl

The Hide Library option causes HotDocs to assemble a document without first displaying the HotDocs
template library. The user will not see the template library window at all during assembly. It is most
commonly used by integrators who are using HotDocs with a third-party program and want to start an
assembly without first displaying the template library window. (See also Show Library.)

If using this option at the command line, include the Template File (/tf) option.

HotDocs Auto-Assemble File

/ha="path and file name"

The HotDocs Auto-Assemble File option causes a document to be assembled using the specified auto-
assemble (.HDA) file.

You can also specify a URL for the path and file name (for example,
/ha=http://www.yoursite.com/hdafile.hda).

HotDocs API

26

HotDocs Auto-Install File

/hi="path and file name"

The HotDocs Auto-Install File option causes the template set in the specified auto-install (.HDI) file to be
installed. During this process, HotDocs prompts the user for any required information it needs to install
the template library to the correct location.

You can also specify a URL for the path and file name (for example,
/hi=http://www.yoursite.com/hdifile.hdi). When this command is passed, HotDocs downloads the file and
prompts the user for the information needed to install the template library.

HotDocs Model

/mo

The HotDocs Model command-line option indicates that the file referenced in the library is a HotDocs
Model. When you select the document in the library and click Assemble, HotDocs will create an interview
for the model.

See Overview: Create HotDocs Models for more information.

Installation File

/if=path and file name

The Installation File option specifies an alternate installation script to execute in lieu of Hotdocs.inx ,
which sets up a workstation for individual HotDocs users. This file must conform to the HotDocs
Installation Script DTD (http://support.hotdocs.com/dtd/hotdocs6_inx.dtd).

Interview Scope

/is=u

http://support.hotdocs.com/dtd/hotdocs6_inx.dtd

Using Command-Line Options

27

The Interview Scope option allows you to ask only those dialogs that contain questions not answered by
an existing answer file. This may be useful, for example, if you have some answers you are retrieving from
a database that you don't want the user to change. Using this option will ask only those questions that
don't have answers.

If you do not want certain variables to appear in an interview, do not include them in an explicit
ASK instruction. Otherwise, HotDocs will present the variables to the user.

Cannot be used with the Start Interview Group (/sig) option or the Keep Interview Group
(/kig) option.

Keep Interview Group

This option was introduced with the release of HotDocs 2007.

/kig

The Keep Interview Group option is used to control which questions are asked when assembling a group
of related documents, specifically, it keeps questions that are already answered in one interview from
being asked in subsequent interviews. It must be used with the Start Interview Group option, which must
be assigned to each subsequent template within the group.

For example, you have three related templates that will be added to the assembly queue (Template A,
Template B, and Template C). Each of these templates uses Variable A. To keep Variable A from being
asked in all three interviews, you would assign the Start Interview Group option to Template A. Then you
would assign the Keep Interview Group option to Templates B and C. Once the user answers Variable A,
it will not be asked in any subsequent interviews.

If a template is added to the assembly queue that doesn't use either of these options, it and any
subsequent templates will not be included in the interview group.

Library File

/lf="path and file name"

The Library File option allows you to start HotDocs and open a specific library. If HotDocs is already
running, it opens the library specified by the path and file name.

HotDocs API

28

Lock Answer File

/la

The Lock Answer File option prevents users from opening, closing, and saving answer files during
document assembly. If it is the only option used, however, users can choose an answer file before
assembly and save any answers they have entered after assembly.

To keep users from choosing an answer file before assembly, specify an answer file using the Answer File
option. To keep them from manually saving their answers, use either the Discard Answers option or the
Save Answers option.

If using this option at the command line, include the Template File (/tf) option.

Does not work in conjunction with the No Assembly Window (/nw) option.

Lock Library

/ll

The Lock Library option locks the current library and prevents the user from editing the library or its
contents. Specifically, when HotDocs is launched and the library appears, users can select templates and
assemble documents from them. They can also view the answer library and change user preferences at
the HotDocs Options dialog box. All other options are unavailable.

New Answer File

/na[="path and file name"]

The New Answer File option specifies a new, untitled answer file to be used when assembling a given
document. This option causes HotDocs to suppress the Answer File dialog box, which normally appears
before assembly. Specifying a path and file name is optional. If a file name is specified, it will be used for
the new answer file. If an answer file with that same name already exists, HotDocs overwrites the existing

Using Command-Line Options

29

file with the new one. If no file name is specified, HotDocs displays a Save Answer File dialog box at the
end of assembly.

When specifying an answer file name, you must include the file name extension .ANX.

If using this option at the command line, include the Template File (/tf) option.

No Assembly Window

/nw

The No Assembly Window option causes HotDocs to assemble a document without displaying the
assembly window.

If using this option at the command line, include the Template File (/tf) and Answer File (/af)
options. If using this option at the library properties, include the Answer File (/af) option.

You should also use the Output File (/of) or Send to Word Processor (/stw) option if you want
HotDocs to produce a document at the end of the assembly.

No Exit

/nx

The No Exit option allows the integration to keep an instance of HotDocs running without displaying any
interface.

No Interview

/ni

The No Interview option removes the Interview tab from the assembly window, and, by default, displays
the assembled document in the Document Preview or Form Document tab (depending on whether you

HotDocs API

30

are assembling a text or form document). To present a correctly assembled document, you should specify
an answer file using the Answer File option. Otherwise, the document will be assembled without any
answers.

While viewing an assembled document that was generated using this command-line option, you
cannot edit answers while viewing the Document tab.

If using this option at the command line, include the Template File (/tf) and Answer File (/af)
options. If using this option at the library properties, include the Answer File (/af) option.

Output File

/of="path and file name"

The Output File option causes HotDocs to assemble the document and save it using the file name you
specify. If you are using the Answer Summary or Question Summary options, the Output File option
specifies the name for either of those generated documents. This is useful if you know you want to save
an assembled document every time that HotDocs finishes assembling that document.

Changing the file extension on the file specified in the Output File option instructs HotDocs to convert the
output file to the new file type. For example, adding the command line option
/of="C:\templatename.pdf" to a DOCX template results in an PDF format output file.

Since HotDocs cannot convert to all format types, we recommend that you manually test HotDocs
conversion capablities for a desired format before adding the command-line option. Be aware as well that
converting output files to alternate formats can sometimes cause variations in formatting and user
experience.

If you use this option with the command line, be sure to include the Template File (/tf) option.

Overlay Answer File

/ov="path and file name"

The Overlay Answer File option causes HotDocs to take answers from a specific answer file and overlay
them in the current answer file. For example, if you have specific information about a client that can be
used in assembling multiple documents, you can save just that information in an overlay answer file and
then use the Overlay Answer File option to force HotDocs to use those answers when assembling a

Using Command-Line Options

31

document. All answers entered during assembly (including overlaid answers) are saved to the current
answer file—not the overlay answer file—thus maintaining the integrity of the overlay answer file. An
overlay answer file is loaded after the regular answer file so that the answers contained therein can
overlay existing answers.

If you do not include a full path on the command-line, HotDocs will first look for the answer file in the
same folder as the template. If it's not located there, HotDocs will look in the Answers folder.

You can retrieve an overlay answer file from a location on a Web server by specifying a URL for the path
and file name (for example, /ov=http://www.yoursite.com/overlayanswers.anx).

If you are saving the overlay answer file to the same folder as the template, do not use the same
name as the template. Otherwise, HotDocs will think the answer file is a default answer file. (See
Create a Default Answer File.)

If using this option at the command line, include the Template File (/tf) option.

Paper Size

/ps=paper size

The Paper Size option selects the specified paper size when the user prints a copy of the form template
or document. The effect is the same as manually setting the page size from the Print dialog box. This
option works with form templates and documents only.

Paper size values that can be used include letter, legal, and so forth. For a complete list of acceptable
values, either at the assembly window or at the HotDocs Filler window, click Document Properties >
Printing (File menu) and click the Paper Size drop-down button. Values that include a space character
must be placed inside quotation marks. You can shorten the values as long as the shortened form
matches only one paper size. Paper size values are not case-sensitive.

If a paper size is specified at the Printing Properties dialog box and the Paper Size (/ps)
command-line option is also used, the command-line option takes precedence.

If using this option at the command line, include the Template File (/tf) option

Paper Tray

HotDocs API

32

/pt=paper tray

This option is used with form documents only.

The Paper Tray option causes a specified printer paper tray or manual feed option to be used when
printing a form document from HotDocs Filler. Paper tray values that can be used include manual, upper,
lower, and so forth. For a complete list of acceptable values, either at the assembly window or at the
HotDocs Filler window, click Document Properties > Printing (File menu) and click the Paper Source
drop-down button.

If a paper source is specified at the Printing Properties dialog box and the Paper Tray (/pt)
command-line option is also used, the command-line option takes precedence.

If using this option at the command line, include the Template File (/tf) option.

Print

/pr

This option is used with form documents only

The Print option causes HotDocs to print a copy of the assembled text or form document once the user
closes the assembly window. This is useful if you know you will always need to print a copy of a specific
assembled document.

If using this option at the command line, include the Template File (/tf) option.

Print Answers Only

/pa

This option is used with form documents only

The Print Answers Only option selects the Answers Only (Use Preprinted Form) option at the Print
dialog box. Then, when the user prints the assembled form document, it prints only the form's answers
and not the underlying static text. This allows you to use preprinted forms.

Using Command-Line Options

33

If using this option at the command line, include the Template File (/tf) option.

Print Both

/pb

This option is used with form documents only

The Print Both option selects the Form with Answers option at the Print dialog box. Then, when the
user prints the form document, the current form and its answers are printed.

If using this option at the command line, include the Template File (/tf) option.

Print Copies

/pc=numberofcopies

This option is used with form documents only

The Print Copies option specifies the number of copies that should be printed when the user prints the
form document. This number should appear in the Number of Copies field at the Print dialog box

If using this option at the command line, include the Template File (/tf) option.

Print Duplex

/pd

This option is used with form documents only

The Print Duplex option sets the duplex printing option for a given form document. It prints the
document Double-Sided, Side-to-Side, as if that option were selected at the Printing Properties dialog

HotDocs API

34

box (which you can access by clicking Document Properties > Printing (File menu).) When the user
prints the form document, it is printed using this option.

If using this option at the command line, include the Template File (/tf) option.

Print Form Only

/po

This option is used with form documents only

The Print Form Only option selects the Form Only (Blank Form) option at the Print dialog box. Then,
when the user prints the form document, it prints a blank copy of the form without answers.

If using this option at the command line, include the Template File (/tf) option.

Print Without Dialogs

/pw

This option is used with form documents only

The Print Without Dialog option causes HotDocs to bypass the Print dialog box and print the form
using the current printer. The form is printed when the user clicks the Print Document button at the
assembly window. .

If using this option at the command line, include the Template File (/tf) option.

Question Summary

/qs

Using Command-Line Options

35

The Question Summary option is used with the Output File option to specify the path and file name for
saving a question summary. It is useful if you want a certain template to always generate a question
summary document.

The Question Summary option is normally used with the No Assembly Window option, which causes
HotDocs to automatically create and save the question summary document without displaying the
assembly window.

Question summaries are saved in HTML format.

If using this option at the command line, include the Template File (/tf) option.

Register

/regserver

The Register option registers the HotDocs COM servers in the registry.

Save Answers

/sa

The Save Answers option forces an answer file to be saved at the end of an assembly. If using an existing
answer file, any answers entered during the interview will be saved automatically. If using a new, untitled
answer file, HotDocs will force the user to specify an answer file name.

To always force the user to save a new answer file after entering answers in an interview—even
if using an existing answer file—use the Save Answers Prompt (/sap) option.

To give users the option of saving an answer file, rather than forcing them to save, use either the
Suggest Save (/ss) or the Suggest Save New (/ssn) option.

Save Answers Prompt

HotDocs API

36

/sap

The Save Answers Prompt option, which is used in connection with an ASSEMBLE instruction, prompts
the user to save an answer file after completing an interview. Regardless of whether the user uses an
existing answer file during assembly, when the user finishes that assembly, HotDocs prompts to save the
answers in a different file.

To always save an answer file without prompting the user for an answer file name (unless the
user is using a new answer file) use the Save Answers (/sa) option.

To give users the option of saving an answer file, rather than forcing them to save, use either the
Suggest Save (/ss) or the Suggest Save New (/ssn) option.

Send to Plugin

/sto="Name of Plugin"

The Send to Plugin option sends the assembled document to a specified output plugin. The class name
of the plugin is the plugin name. For example, to use a google upload plugin the command line switch
would be:

 /sto="HDGoogleDriveOutputPlugin"

If using this option at the command line, include the Template File (/tf) option

Send to Word Processor

/stw

The Send to Word Processor option sends the assembled document to the word processor once the
user closes the assembly window. This is useful if you know you always want to view the assembled
document using the word processing program.

If using this option at the command line, include the Template File (/tf) option.

Using Command-Line Options

37

Show Library

/sl

The Show Library option forces HotDocs to display the template library if it is currently not showing. This
is useful if you are integrating HotDocs with another program and you have hidden the library using the
Hide Library option.

Start Interview Group

This option was introduced with the release of HotDocs 2007.

/sig

The Start Interview Group option is used to control which questions are asked when assembling a group
of related documents, specifically, it keeps questions that are already answered in one interview from
being asked in subsequent interviews. It must be used with the Keep Interview Group option, which
must be assigned to each subsequent template within the group.

For example, you have three related templates that will be added to the assembly queue (Template A,
Template B, and Template C). Each of these templates uses Variable A. To keep Variable A from being
asked in all three interviews, you would assign the Start Interview Group option to Template A. Then you
would assign the Keep Interview Group option to Templates B and C. Once the user answers Variable A,
it will not be asked in any subsequent interviews.

If a template is added to the assembly queue that doesn't use either of these options, it and any
subsequent templates will not be included in the interview group.

Suggest Save

/ss

The Suggest Save option, which is used in connection with an ASSEMBLE instruction, causes HotDocs to
ask users after assembly of a document has finished if they want to save answers entered during the
interview in an answer file. Specifically, if the user has assembled a document and made changes to an
existing answer file, HotDocs prompts to save the answers to that file. If saving a new, untitled file,
HotDocs allows the user to specify the new answer file name.

HotDocs API

38

If your user is using an existing answer file but you want to give the user the option of saving the
answers in a new, different answer file, use the Suggest Save New (/ssn) option.

If you want to force users to save their answers after an assembly is finished, rather than give
them the option, use either the Save Answers (/sa) or the Save Answers Prompt (/sap) options.

Suggest Save New

/ssn

The Suggest Save New option, which is used in connection with an ASSEMBLE instruction, causes
HotDocs to ask if answers should be saved in a new answer file after assembly of a document has finished.
Regardless of whether the user is using an existing answer file during assembly, when the user finishes
that assembly, HotDocs gives the user the option of saving the answers in a new answer file.

If your users are using an existing answer file and you want them to save answers they have
entered in that file instead of a new one, use the Suggest Save (/ss) option.

If you want to force users to save their answers after an assembly is finished, rather than give
them the option, use either the Save Answers (/sa) or the Save Answers Prompt (/sap) options.

Suppress Installation

 /si

The Suppress Installation option keeps HotDocs from installing itself on a per-user basis. (Normally,
HotDocs runs a per-user installation the first time a user starts HotDocs.)

If the per-user installation never runs for a user, that user may not be able to edit templates.

Suppress Unanswered Warning

Using Command-Line Options

39

/sw

The Suppress Unanswered Warning option keeps HotDocs from displaying the warning dialog box that
appears when the user attempts to either print, save, or send the assembled document to the word
processor and the assembled document still contains unanswered questions.

Template File

/tf="path and file name"

The Template File option causes HotDocs to assemble a document using the specified template or clause
library.

If you want an interview template (component file) started from the Template File command
line, the component file must have an INTERVIEW or STARTUP computation in it or assembly
will fail.

Unregister

/unregserver

The Unregister option unregisters the HotDocs COM servers from the registry.

41

COM API

About the HotDocs COM API

About the HotDocs COM API

HotDocs includes a COM API that you can use in your own application to control HotDocs. At its root is
the Application object, which represents the HotDocs library window and the main functional uses of
HotDocs. In order to control HotDocs or perform most other tasks using the API, your application must
get a reference to the Application object. The following code sample show how you can do this:

Example

Visual C#

HotDocs.Application app = new HotDocs.Application();

The HotDocs Application object is a singleton. This means that there will never be more than
one HotDocs Application object per Windows desktop at a time. If two or more applications get
a reference to the HotDocs Application object at the same time, they all hold references to the
same object, even though they are all separate processes. This also means that every resource the
HotDocs Application object has is shared among all the applications that hold references to it.
This includes the Assembly Queue, application visibility, and so forth.

COM Interface

The HotDocs COM interface includes the following objects, which you can use when developing your
HotDocs integration:

• HotDocs.Answer Object
• HotDocs.AnswerCollection Object
• HotDocs.Application Object
• HotDocs.Assembly Object
• HotDocs.AssemblyCollectionClass Object
• HotDocs.Component Object
• HotDocs.ComponentCollection Object
• HotDocs.ComponentProperties Object
• HotDocs.ComponentProperty Object
• HotDocs.Dependency Object
• HotDocs.DependencyCollection Object
• HotDocs.Icon Object

HotDocs API

42

• HotDocs.Library Object
• HotDocs.LibraryEntity Object
• HotDocs.Plugin Object
• HotDocs.PluginsClass Object
• HotDocs.TemplateInfo Object
• HotDocs.VarMap Object

Using the HotDocs COM API

The following topics contain information about using various features of the HotDocs COM API:

• Use the HotDocs COM API in .NET
• Use the HotDocs Variable Mapping API
• Understand COM Events
• How do I program a COM Event in Visual C#?

How do I use the HotDocs COM API in .NET?

If you use the .NET Framework to develop a HotDocs integration, you may run into a problem with .NET
not cleaning references to COM objects immediately. This may cause HotDocs to continue running even
after you would expect it to quit. Although .NET will eventually clean up references to the COM objects
automatically, and cause HotDocs to close, you can avoid this delay by forcing a garbage collection call.

To force a garbage collection call

1. Subscribe to the Application.OnAssemblyCompleteEvent event.
2. When OnAssemblyCompleteEvent is fired, call System.GC.Collect(). This is a time-consuming API

call, but it causes all the runtime callable wrappers (RCWs) that are not referenced to be cleaned
up, releasing HotDocs and letting it shut down.

To avoid leaving files open longer than desired, you should also force the runtime to close
objects when you are finished with them. For example, after you are finished with a
ComponentCollection, you should call Marshal.ReleaseComObject() on the object.

How do I use the HotDocs Variable Mapping API?

COM API

43

The HotDocs Variable Mapping API lets you create associations between data fields in your application
and HotDocs variables in your templates. For example, if your application contains a data store with
information about customers, you can map the fields in your data store to variables in a HotDocs
template. Then when a user assembles a document from the template, your application can pre-populate
the AnswerCollection with appropriate data from the data store, such as a customer name or address.

Ideally, if the names of your application's data fields matched the names of your HotDocs variables, then
variable mapping would not be required. Likewise, if the variable names and your data store's field names
were guaranteed never to change, you might choose to hard-code mappings in your application.
However, the reality is that while data fields and variables represent the same information, they often do
not use the same name. The HotDocs Variable Mapping API addresses both of these problems--you can
match data with different names, and you can easily change mappings whenever required by changes to
the template or your data store.

The associations (mappings) you set up between HotDocs variables and your application's data fields are
saved in a separate HotDocs map (.HMF) file for each template. When a template with an associated map
file is assembled, HotDocs loads the information from the map file into the Assembly. However, once
HotDocs loads the map file, it doesn't actually do anything to retrieve values from your application's data
store; it is up to your application to process the mappings found in the map file and send values from
your data store to the AnswerCollection associated with the current assembly.

HotDocs allows mapping to flow both ways, which means that in addition to sending answers
from your application to HotDocs, HotDocs can also send changed answers back to your
application.

A HotDocs Variable Map contains three collections of information:

Collection Description

HDVariables A list of HotDocs variables that can be mapped to fields in your data store.
This collection is usually populated by copying the list of variables (and their
types) from a HotDocs component file.

SourceNames A list of fields in your data store.

Mapping A list of mappings between variables and source names (fields) in your data
store. Each item in this collection maps one variable name to one source
name.

Mapping files created using HotDocs 2009 (or later) are saved in an XML file format, which
cannot be read by earlier versions of HotDocs. HotDocs 2009-11 can still read existing binary
mapping files created by earlier versions, however.

The following topics explain how you can use the HotDocs Variable Mapping API to create and use
mapping files:

• Create a new HotDocs Map (.HMF) file
• Import one map file into another

HotDocs API

44

• Use an existing variable mapping

Understand COM Events

COM events are similar to functions, except events allow two-way communication between a COM server
and a client application. The basic idea of COM events is similar in principle to C-style callback functions.
You give the COM server an interface to call when an event happens (subscribing), and the COM server
calls a function on that interface when the event happens. With the events mechanism, a COM server can
call back to a client to alert it of something asynchronously.

The COM event architecture consists of two interfaces, or parts:

• Connection point: This is the interface on the server that the client uses to tell the server that it is
interested in receiving event notifications.

• Event sink: This is the interface the client implements that the server uses to send an event
notification. An event sink is simply an IDispatch interface.

The following is an example of the logical sequence of calls for configuring these interfaces and receiving
an event:

1. The client application gets a reference to the COM server (HotDocs) and asks it for a reference to
the connection point that implements the event.

2. The server responds with a reference to the correct connection point.

3. The client calls a method on the connection point interface to "subscribe" to the event and passes
a reference to the event sink interface as a parameter through which the server will call back.

4. The server stores the event sink interface until it needs to fire the event, in which case it calls the
appropriate method on the event sink interface.

5. The client handles the method call.

6. When the client no longer needs to receive event notifications, it calls another method on the
server to "unsubscribe" from the event and the server releases its reference to the event sink.

In order to use the HotDocs API, you must use COM events. For example, when an Assembly object is
added to the Assembly collection, it is not assembled immediately. Instead, it is placed in a queue and the
function call returns to the caller. Later, when HotDocs decides to run the assembly, HotDocs calls back
(using a COM event) to the client to tell it that the assembly is ready to run.

The following HotDocs objects implement connection points that can be used to catch events:

COM API

45

Answer Events

Event Description

OnValueFoundEvent This event is fired for every value found for the particular answer. This event is
fired during the processing of the Answer.IterateValues method.

Application Events

Event Description

AssemblyCompleteEvent

This event is fired when assembly completes.

OnAssemblyCompleteEvent
This event has been deprecated for HotDocs Desktop 11.
AssemblyCompleteEvent is recommended for use instead.

This event is fired when an assembly is completed. It returns the
name and path of the template that was used to assemble the
document, the path to the assembled document, a pointer to the
AnswerCollection object used in the assembly, and the assembly
handle which was given when the assembly was added to the queue.

OnAssemblyStartEvent This event is fired when an assembly starts. It returns a reference to
the Assembly object that represents the assembly session.

OnErrorEvent This event is fired when an error occurs. By returning true for the
override parameter, the integration can tell HotDocs not to display
any user interface indicating that an error occurred, which allows the
integration to either display its own error message or silently handle
the error.

OnLibraryInterfaceCloseEvent This event is fired when the user closes the HotDocs library user
interface.

OnLibraryOpenEvent

This event is fired when a library is opened.

OnTemplateSelectedEvent This event is fired when the user selects a template in the library to
assemble, or selects a template at the SelectTemplate or
SelectMultipleTemplate dialogs. By returning *override == true, the
integration can cancel the selection of the template.

OnUserInterfaceEvent This event is fired when the user selects items in the library user
interface.

OnUserMenuItemClickedEvent This event is fired when the user selects an integration-defined menu
item.

Assembly Events

HotDocs API

46

Event Description

OnAssemblyCompleteEvent This event is fired when the assembly completes.

OnAssemblyStartEvent This event is fired when the assembly starts.

OnCanOpenFile This event is fired when a file can be opened.

OnCloseAssemblyInterfaceEvent This event is fired when assembly interface actually closes.

OnErrorEvent This event is fired when an error occurs. By returning true for the
override parameter, the integration can tell HotDocs not to display
any error messages, allowing the integration to either display its
own error message or deal with the error silently.

OnFileOpen This event is fired when a file is opened.

OnFileSave This event is fired when a file is saved.

OnFileSelectEvent This event is fired when a file is selected.

OnGetAnswerFileDisplayName This event is fired when HotDocs gets the name of an answer file to
display.

OnGetMRUInfo This event is fired when HotDocs gets information from the most
recently used (MRU) list.

OnNeedAnswerEvent This event is fired when an answer value is needed by the assembly,
but not found in the AnswerCollection answer set. It allows the
integration to provide answers as they are needed, rather than
trying to provide all the answers before the assembly starts.

OnPostCloseAnswerFile This event is fired after the answer file is closed.

OnPostSaveDocumentEvent This event is fired after a document is saved. The document can be
an assembled document, a question summary document, or an
answer summary document.

OnPreCloseAnswerFile This event is fired when HotDocs prepares to close an answer file.

OnPreSaveDocumentEvent This event is fired prior to saving the document. By setting *showui
= true, the integration can prevent the user interface relating to
saving the document from showing. By setting *override = true, the
integration can prevent the save from happening.

OnUserInterfaceEvent This event is fired when the user selects certain options at the
assembly interface. This can be useful if the integration wants to
override a particular HotDocs feature or command.

OnUserMenuItemClickedEvent This event is fired when the user selects an integration-defined
menu item. (See Assembly.AddUserMenuItem Method.)

PostSaveAnswersEvent

This event is fired after an answer file is saved.

PreSaveAnswersEvent

This event is fired after the user has indicated he or she wants to

COM API

47

save the answers, but before the actual save occurs. By setting
*override == true, the integration can prevent the save from
happening.

How do I program a COM Event in Visual C#?

1. Create a new project with a reference to the HotDocs Type Library in Visual Studio:

1. Create a new Visual C# Console Application project.

2. Right click on References from the Solution Explorer and Add Reference. The Add
Reference dialog box appears.

3. From the COM type libraries, select the HotDocs 11 Type Library, then click OK.

4. Add a using HotDocs; statement to the project.

5. Add a using System.Runtime.InteropServices; statement so you can release the
COM object when finished with it.

2. Create a new Application object:

• Within the static void Main method add:

Application app = new Application();

3. Create an event handler that will be called when the event is fired:

1. Directly below the new Application object type app.OnAssemblyStartEvent += and then
tab twice to generate the method stub for displaying a message when the event fires.
 This will add the following to the static void Main method.

app.OnAssemblyStartEvent += app_OnAssemblyStartEvent;

2. Comment out throw new NotImplementedException();

3. Directly below that, add the following code to the newly created event:

Console.WriteLine("OnAssemblyStart");

4. Add code to start the assembly so you can see your event:

HotDocs API

48

• Add the following code to the static void Main method, below the new application object:

string tplPath, tplTitle, tplDesc;
app.SelectTemplate("", true, out tplPath, out tplTitle, out
tplDesc);

if (tplPath != "")
 app.Assemblies.AddToQueue(tplPath);

Console.ReadLine();

5. Release the COM object:

• Add the following code to the end of the static void Main method, after the above code:

Marshal.ReleaseComObject(app);

6. Run the application.
7. Result:

The HotDocs SelectTemplate interface appears, allowing you to select a template from the library.
 When you select a template, it is added to the assembly queue. Then when the assembly starts,
the app.OnAssemblyStart event fires and the console displays the message telling you that it fired.

Enumerations

DependencyType Enumeration

This enumeration is a set of values that determines what type of file is represented by a
Dependency object.

HotDocs Directories

Name Value Description

NoDependency 0

BaseCmpFileDependency 1 Base component file

PointedToCmpFileDependency 2 Pointed-to component file

TemplateInsertDependency 3 Template insertion

ClauseInsertDependency 4 Clause insertion

Clause library insertion 5 ClauseLibraryInsertDependency

COM API

49

Image insertion (INSERT
\"filename\" /IMAGE)

6 ImageInsertDependency

InterviewImageDependency 7 An image included via a component

VariableTemplateInsertDependency 8 Variable template insertion (INSERT varname)

VariableImageInsertDependency 9 An image inserted via a variable (INSERT varname /IMAGE)

MissingVariableDependency 10 A variable was referenced for insertion, but does not exist.

MissingFileDependency 11 A file was referenced, but does not exist.

AssembleDependency 12 Template inclusion via ASSEMBLE statement

PublisherMapFileDependency 13 A publisher map file (.hdpmx)

UserMapFileDependency 14 A user map file (.hdumx)

AdditionalTemplateDependency 15 Additional template file specified in component properties.

HDAFFORMAT Enumeration

This enumeration is a set of values that determine which format HotDocs uses when saving an answer file.

All answer files are written in XML format by HotDocs 2009 and later. The difference between a
"HotDocs 2009-11 Format" XML answer file and a "Pre-HotDocs 2009 Format" XML answer
file is that HotDocs 2009-11 answer files use UTF-8 encoding and they do not contain an
embedded DTD. If your answer files must be read by versions of HotDocs earlier than 2009, use
the PreHD2009Format.

Answer File Formats

Name Value Description

HD_ANSFORMAT 1 Pre-HotDocs 2009 Format (Binary) - Deprecated

HD_ANXFORMAT 2 Pre-HotDocs 2009 Format (XML) - Deprecated

PreHD2009Format 2 Pre-HotDocs 2009 Format (XML)

HD2009Format 3 HotDocs 2009-11 Format (XML)

HDAIMENU Enumeration

HotDocs API

50

This enumeration is a set of values for manipulating the menus in the HotDocs assembly window user
interface.

Assembly Window Menus

Name Value Description

AI_FILE 1 The File menu in the assembly window.

AI_EDIT 2 The Edit menu in the assembly window.

AI_VIEW 3 The View menu in the assembly window.

AI_TOOLS 4 The Tools menu in the assembly window.

AI_FIELD 5 The Field menu in the assembly window.

AI_HELP 6 The Help menu in the assembly window.

HDANSWERUPLOADFORMAT Enumeration

This enumeration is a set of values to determine which format to use for answer files uploaded to a URL. It
is used with the AnswerCollection.UploadAnswerCollection method.

Uploaded Answer Formats

Name Value Description

HD_DEFAULTFORMAT 1 Default binary file format

HD_XMLFORMAT 2 XML format used by XML (.ANX) answer files and HotDocs
Server interviews (preferred because it is much easier to work
with once it gets to the server)

HDASSEMBLYSTATUS Enumeration

This enumeration is a set of values for determining the status of an Assembly object.

Status

Name Value Description

COM API

51

HDASMSTATUSASSEMBLING 4 The Assembly object is being assembled.

HDASMSTATUSAUTOSELECTED 16 The Assembly object was automatically selected.

HDASMSTATUSCOMPLETED 8 The Assembly object has been assembled and the assembly
completed with no errors.

HDASMSTATUSCONFIRMED 2 The Assembly object is awaiting assembly.

HDASMSTATUSERROR 256 Assembly is complete, but an error occurred during assembly
and it did not complete successfully.

HDASMSTATUSPENDING 1 The Assembly object is pending.

HDASMSTATUSUNDEFINED 0 Undefined.

HDASMSTATUSUSERSELECTED 34 The Assembly object was selected by the user.

HDAUI Enumeration

This enumeration is a set of values for manipulating the HotDocs assembly window user interface.

Menus

Name Value Description

AUIFILEMENU 0 Enables (true) or disables (false) the File menu.

AUIEDITMENU 1 Enables (true) or disables (false) the Edit menu.

AUIVIEWMENU 2 Enables (true) or disables (false) the View menu.

AUITOOLSMENU 3 Enables (true) or disables (false) the Tools menu.

AUIFIELDMENU 4 Enables (true) or disables (false) the Field menu when
assembling a form template with the form document tab
selected.

AUIHELPMENU 5 Enables (true) or disables (false) the Help menu.

AUINAVIGATEMENU 63 Enables (true) or disables (false) the Navigate menu.

Tabs and Toolbars

Name Value Description

AUIINTERVIEWTAB 6 Shows (true) or hides (false) the Interview tab.

AUIPREVIEWTAB/AUIDOCUMENTTAB 7 Shows (true) or hides (false) the Document Preview (text

HotDocs API

52

templates) or Form Document (form templates) tab.

AUIVARIABLESHEETTAB 8 Shows (true) or hides (false) the Variable Sheet tab.

AUIQUESTIONSUMMARYTAB 9 Shows (true) or hides (false) the Question Summary tab.

AUIANSWERSUMMARYTAB 10 Shows (true) or hides (false) the Answer Summary tab.

AUIRESOURCEPANE 11 Reserved for future use.

AUIINTERVIEWOUTLINE 12 Shows (true) or hides (false) the interview outline.

AUIANSWERFILEDROPDOWN 13 Shows (true) or hides (false) the answer file drop-down
list on the toolbar.

AUITOOLBAR 14 Shows (true) or hides (false) the standard toolbar.

AUISTATUSBAR 15 Shows (true) or hides (false) the status bar.

AUIEDITTOOLBAR 51 Shows (true) or hides (false) the edit toolbar.

AUIDIALOGTOOLBAR 52 Reserved for future use.

AUIFORMSTOOLBAR 53 Shows (true) or hides (false) the document (text
templates) or forms (form templates) toolbar.

AUIDOCCOMPARETAB 61 Shows (true) or hides (false) the Comparison tab.

This only applies when HotDocs Compare is installed,
which is no longer available starting with the release of
HotDocs 2009.

AUIDLGRESOURCEPANE 65 Shows (true) or hides (false) the resource pane from the
Interview toolbar.

AUIFORMRESOURCEPANE 66 Shows (true) or hides (false) the resource pane from the
Form Document toolbar.

AUIVARSHEETRESOURCEPANE 67 Shows (true) or hides (false) the resource pane from the
Variable Sheet toolbar.

End of Interview Dialog

Name Value Description

AUIEOIGOTOFIRSTUNANSWERED 55 Shows (true) or hides (false) the Go to the first unanswered
question in the interview command, when applicable, at the
End of Interview dialog.

AUIEOIPASTETOWP 56 Shows (true) or hides (false) the Paste the assembled
document into the open word processor document
command (for text templates) at the End of Interview dialog.

AUIEOISENDTOCLIPBOARD 57 Shows (true) or hides (false) the Copy the assembled
document to the Clipboard command at the End of

COM API

53

Interview dialog. (This command is only available when
assembling Microsoft Word documents.)

AUIEOIOPTIONS 58 Shows (true) or hides (false) the Choose which buttons are
displayed on this dialog command at the End of Interview
dialog.

AUIEOISENDTOFILLER 59 Shows (true) or hides (false) the View the assembled form
document at the Form Document tab command (for form
templates) at the End of Interview dialog.

AUIEOICLOSENOSAVE 60 Shows (true) or hides (false) the Close this window without
saving the assembled document command at the End of
Interview dialog.

AUIEOISENDTOOUTPUT 61 Shows (true) or hides (flase) the Send to Output command,
when applicable, at the End of Interview dialog.

File Menu

Name Value Description

AUIFILENEWANSWERS 16 Enables (true) or disables (false) the New Answers item
in the File menu, as well as the New Answers button on
the toolbar.

AUIFILEOPENANSWERS 17 Enables (true) or disables (false) the Open Answers item
in the File menu, as well as the Open Answers button
and answer file drop-down list on the toolbar.

AUIFILEOVERLAYANSWERS 18 Enables (true) or disables (false) the Overlay Answers
item in the File menu.

AUIFILESAVEANSWERS 19 Enables (true) or disables (false) the Save Answers item
in the File menu, as well as the Save Answers button on
the toolbar.

AUIFILESAVEANSWERSAS 20 Enables (true) or disables (false) the Save Answers As
item in the File menu.

AUIFILESENDANSWERSTO 21 Enables (true) or disables (false) the Send Answers To
item in the File menu.

AUIFILESAVEDOCUMENTAS 22 Enables (true) or disables (false) the Save Document As
item in the File menu. It also shows or hides the Save the
assembled document in a file command at the End of
Interview dialog.

AUIFILESAVEQUESTIONSUMMARYAS 23 Enables (true) or disables (false) the Save Question
Summary As item in the File menu (at the Question
Summary tab).

AUIFILESAVEANSWERSUMMARYAS 24 Enables (true) or disables (false) the Save Answer

HotDocs API

54

Summary As item in the File menu (at the Answer
Summary tab).

AUIFILESAVEVARIABLESHEETAS 25 Enables (true) or disables (false) the Save Variable Sheet
As item in the File menu (at the Variable Sheet tab).

AUIFILESENDDOCUMENTTO 26 Shows (true) or hides (false) the Send Document To item
in the File menu and the Send Document command (for
text templates) at the End of Interview dialog. It also
enables or disables the Send Document button on the
toolbar. Finally, if the End of Interview action selected at
HotDocs Options includes sending the assembled
document to the word processor or HotDocs Filler before
closing, HotDocs will simply close the assembly without
sending the document.

AUIFILESENDQUESTIONSUMMARYTO 27 Shows (true) or hides (false) the Send Question
Summary To item in the File menu (at the Question
Summary tab).

AUIFILESENDANSWERSUMMARYTO 28 Shows (true) or hides (false) the Send Answer Summary
To item in the File menu (at the Answer Summary tab).

AUIFILESENDVARIABLESHEETTO 29 Shows (true) or hides (false) the Send Variable Sheet To
item in the File menu (at the Variable Sheet tab).

AUIFILESENDADDENDUMTO 30 Shows (true) or hides (false) the Send Addendum To
item in the File menu (at the Form Document tab).

AUIFILEPAGESETUP 31 Enables (true) or disables (false) the Page Setup item in
the File menu (at the Question Summary and Answer
Summary tabs).

AUIFILEPRINTPREVIEW 32 Enables (true) or disables (false) the Print Preview item
in the File menu (at the Question Summary and Answer
Summary tabs).

AUIFILEPRINTDOCUMENT 33 Enables (true) or disables (false) the Print Document
item in the File menu, as well as the Print Document
button on the toolbar (at the Form Document tab).

AUIFILEPRINTQUESTIONSUMMARY 34 Enables (true) or disables (false) the Print Question
Summary item in the File menu, as well as the Print
Question Summary button on the toolbar (at the
Question Summary tab).

AUIFILEPRINTANSWERSUMMARY 35 Enables (true) or disables (false) the Print Answer
Summary item in the File menu, as well as the Print
Answer Summary button on the toolbar (at the Answer
Summary tab).

AUIFILEDOCUMENTPROPERTIES 36 Shows (true) or hides (false) the Document Properties
item in the File menu (at the Form Document tab).

COM API

55

AUIFILECLOSE 37 Enables (true) or disables (false) the Close item in the File
menu.

AUIFILESAVEDOCUMENTASPDF 54 Shows (true) or hides (false) the Save the assembled
document as a PDF command at the End of Interview
dialog.

AUIFILESENDCOMPARISONTO 64
This only applies when HotDocs Compare is installed,
which is no longer available starting with the release of
HotDocs 2009.

Shows (true) or hides (false) the Send Comparison To
item in the File menu (at the Comparison tab).

AUIFILEPRINTCOMPARISON 68
This only applies when HotDocs Compare is installed,
which is no longer available starting with the release of
HotDocs 2009.

Enables (true) or disables (false) the Print Comparison
item in the File menu, as well as the Print Comparison
button on the toolbar (at the Comparison tab).

AUIFILESAVECOMPARISONAS 69
This only applies when HotDocs Compare is installed,
which is no longer available starting with the release of
HotDocs 2009.

Enables (true) or disables (false) the Save Comparison
As item in the File menu (at the Comparison tab).

AUIFILESELECTOPENANSWERS 71 Enables (true) or disables (false) the Open Answer File
item in the File Menu.

View Menu

Name Value Description

AUIVIEWTOOLBARS 39 Enables (true) or disables (false) the Toolbar items
(Standard, Edit, Form) in the View menu.

AUIVIEWSTATUSBAR 40 Enables (true) or disables (false) the Status Bar item in the
View menu.

AUIVIEWQUESTIONSUMMARYTAB 41 Enables (true) or disables (false) the Question Summary
Tab item in the View menu.

AUIVIEWANSWERSUMMARYTAB 42 Enables (true) or disables (false) the Answer Summary Tab
item in the View menu.

HotDocs API

56

AUIVIEWVARIABLESHEETTAB 43 Enables (true) or disables (false) the Variable Sheet Tab
item in the View menu.

AUIVIEWINTERVIEWOUTLINE 44 Enables (true) or disables (false) the Interview Outline item
in the View menu.

AUIVIEWRESOURCEPANE 45 Enables (true) or disables (false) the Resource Pane item in
the View menu.

AUIVIEWDOCCOMPARETAB 62 Enables (true) or disables (false) the Comparison Tab item
in the View menu.

This only applies when HotDocs Compare is installed, which
is no longer available starting with the release of HotDocs
2009.

AUIVIEWDIALOGNAVIGATIONBAR 74 Enables (true) or disables (false) the Interview Navigation
Bar in the View menu.

AUIVIEWENDOFINTERVIEWDIALOG 75 Enables (true) or disables (false) the End of Interview
Dialog in the View menu.

AUIVIEWEXPANDALL 77 Enables (true) or disables (false) the Expand All in the View
menu.

AUIVIEWCOLLAPSEALL 78 Enables (true) or disables (false) the Collapse All in the
View menu.

AUIVIEWPREVIEWTAB 80 Enables (true) or disables (false) the Document Preview
tab in the View menu.

Tools Menu

Name Value Description

AUITOOLSOPTIONS 47 Enables (true) or disables (false) the Options item in the
Tools menu, as well as the HotDocs Options button on the
toolbar.

AUIASMQUEUE 76
Enables (true) or disables (false) the Assembly Queue in the
Tools menu.

Help Menu

Name Value Description

AUIHELPHOTDOCSHELP 48 Enables (true) or disables (false) the HotDocs Help item in
the Help menu.

COM API

57

AUIHELPONLINESUPPORT 49 Enables (true) or disables (false) the Online Support item in
the Help menu.

AUIHELPABOUTHOTDOCS 50 Enables (true) or disables (false) the About HotDocs item in
the Help menu.

AUIHELPONLINEREGISTRATION 70 Enables (true) or disables (false) the Online Registration item
in the Help menu.

HDDirectory Enumeration

This enumeration is a set of folders for various HotDocs file types. It is used with the
Application.getDefaultPath method.

HotDocs Directories

Name Value Description

DirAllUsersDocuments 12 Shared documents folder

DirAnswerFiles 7 Answer file folder (e.g., My Documents\HotDocs\Answers)

DirCatalogFiles 13 Catalog file folder (e.g., Public Documents\HotDocs\Catalogs
)

DirFormDocuments 6 Form document folder (e.g., My Documents)

DirHelp 2 Help folder

DirJavaScript 1 JavaScript folder

DirLibraries 4 Library files folder (e.g., My Documents\HotDocs\Libraries)

DirMyDocuments 11 My Documents folder (e.g., My Documents)

DirProgramFiles 0 HotDocs Program Files folder (e.g., C:\Program Files\HotDocs
6)

DirPublishSettings 10 Publish settings folder (e.g., My Documents\HotDocs\Publish)

DirSpellingDictionary 3 Spelling dictionary folder

DirTemplateFiles 9 Template files folder (e.g., My
Documents\HotDocs\Templates)

DirTemplateSets 5 Template sets folder (e.g., Public
Documents\HotDocs\Templates)

DirUploadAnswerFiles 8 Upload answer files folder

HotDocs API

58

HDLIMENU Enumeration

This enumeration is a set of values for manipulating the menus in the HotDocs library window user
interface.

Name Value Description

LI_FILE 0 The File menu in the library window.

LI_EDIT 1 The Edit menu in the library window.

LI_VIEW 2 The View menu in the library window.

LI_TEMPLATE 3 The Template menu in the library window.

LI_TOOLS 4 The Tools menu in the library window.

LI_HELP 5 The Help menu in the library window.

HDLUI Enumeration

This enumeration is a set of values for manipulating the HotDocs library window user interface.

Tabs, Toolbars, and Context Menu

Name Value Description

LUIPROPERTYTAB 9 Shows (true) or hides (false) the Properties tab.

LUIPREVIEWTAB 10 Shows (true) or hides (false) the Preview tab.

LUITOOLBAR 7 Shows (true) or hides (false) the toolbar.

LUISTATUSBAR 8 Shows (true) or hides (false) the status bar.

LUICONTEXTMENU 11 Enables (true) or disables (false) the shortcut menu displayed
when users right-click on items in the library.

File Menu

Name Value Description

LUIFILEMENU 1 Enables (true) or disables (false) the File menu.

COM API

59

LUIFILENEWLIBRARY 57600 Enables (true) or disables (false) the New Library item in the
File menu, as well as the New Library button on the
toolbar.

LUIFILEOPENLIBRARY 57601 Enables (true) or disables (false) the Open Library item in the
File menu, as well as the Open Library button on the
toolbar.

LUIFILESAVELIBRARY 57603 Enables (true) or disables (false) the Save Library item in the
File menu.

LUIFILESAVELIBRARYAS 57604 Enables (true) or disables (false) the Save Library As item in
the File menu.

LUIFILEPRINTPREVIEW 57609 Enables (true) or disables (false) the Print Preview item in the
File menu.

LUIFILEPRINTLIBRARY 57607 Enables (true) or disables (false) the Print Library item in the
File menu, as well as the Print Library button on the
toolbar.

LUIFILEINSTALLTEMPLATE 43059 Enables (true) or disables (false) the Install Templates item in
the File menu.

LUIFILEIMPORTLIBRARY 43046 Enables (true) or disables (false) the Import Library item in
the File menu.

LUIFILEEXPORTLIBRARY 12 Enables (true) or disables (false) the Export Library To items
(HotDocs Library File, Plain Text File) in the File menu.

LUIFILEMRULIST 13 Shows (true) or hides (false) the list of Most Recently Used
(MRU) library files in the File menu.

LUIFILEEXIT 57665 Enables (true) or disables (false) the Exit item in the File
menu.

Edit Menu

Name Value Description

LUIEDITMENU 2 Enables (true) or disables (false) the Edit menu.

LUIEDITCUT 57635 Enables (true) or disables (false) the Cut item in the Edit
menu, as well as the Cut button on the toolbar.

LUIEDITCOPY 57634 Enables (true) or disables (false) the Copy item in the Edit
menu, as well as the Copy button on the toolbar.

LUIEDITPASTE 57637 Enables (true) or disables (false) the Paste item in the Edit
menu, as well as the Paste button on the toolbar.

LUIEDITADD 43043 Enables (true) or disables (false) the Add Item and Add
Folder items in the Edit menu, as well as the Add button

HotDocs API

60

on the toolbar.

LUIEDITDELETE 43042 Enables (true) or disables (false) the Delete item in the Edit
menu, as well as the Delete button on the toolbar.

LUIEDITSORT 43044 Enables (true) or disables (false) the Sort item in the Edit
menu, as well as the Sort button on the toolbar.

LUIEDITPROPERTIES 43048 Enables (true) or disables (false) the Properties item in the
Edit menu, as well as the Properties button on the
toolbar.

LUIEDITMULTIPLEPROPERTIES 46209 Enables (true) or disables (false) the Multiple item in the Edit
menu.

View Menu

Name Value Description

LUIVIEWMENU 3 Enables (true) or disables (false) the View menu.

LUIVIEWTOOLBAR 59392 Enables (true) or disables (false) the Toolbar item in the View
menu.

LUIVIEWSTATUSBAR 59393 Enables (true) or disables (false) the Status Bar item in the
View menu.

LUIVIEWPROPERTIESTAB 43068 Enables (true) or disables (false) the Properties Tab item in
the View menu.

LUIVIEWPREVIEWTAB 43069 Enables (true) or disables (false) the Preview Tab item in the
View menu.

LUIVIEWTITLES 46399 Enables (true) or disables (false) the Template Titles item in
the View menu.

LUIVIEWFILENAMES 46398 Enables (true) or disables (false) the File Names item in the
View menu.

LUIVIEWEXPANDALL 46400 Enables (true) or disables (false) the Expand All item in the
View menu.

LUIVIEWCOLLAPSEALL 46401 Enables (true) or disables (false) the Collapse All item in the
View menu.

LUIVIEWTABSATTOP 46349 Enables (true) or disables (false) the Tabs at Top item in the
View menu.

LUIVIEWMARKUPVIEW 46431 Enables (true) or disables (false) the Markup View item in the
View menu.

Template Menu

COM API

61

Name Value Description

LUITEMPLATEMENU 4 Enables (true) or disables (false) the Template menu.

LUITEMPLATEASSEMBLE 43052 Enables (true) or disables (false) the Assemble item in
the Template menu, as well as the Assemble button
on the toolbar.

LUITEMPLATEONLINETEST 46207 Enables (true) or disables (false) the Test in Browser
item in the Template menu.

LUITEMPLATECREATE 43054 Enables (true) or disables (false) the New item in the
Template menu, as well as the New Template
button on the toolbar.

LUITEMPLATEEDIT 43053 Enables (true) or disables (false) the Edit item in the
Template menu, as well as the Edit button on the
toolbar.

LUITEMPLATECOPY 46300 Enables (true) or disables (false) the Copy item in the
Template menu.

LUITEMPLATEMOVE 43047 Enables (true) or disables (false) the Move item in the
Template menu.

LUITEMPLATEPRINT 46396 Enables true) or disables (false) the Print item in the
Template menu.

LUITEMPLATECONVERTTOMODEL 46480 Enables (true) or disables (false) the Create Model from
Template... item in the Template menu.

LUITEMPLATECONVERTFROMMODEL 46479 Enables (true) or disables (false) the Create Template
from Model... item in the Template menu.

Tools Menu

Name Value Description

LUITOOLSMENU 5 Enables (true) or disables (false) the Tools menu.

LUITOOLSANSWERFILEMANAGER 43070 Enables (true) or disables (false) the Answer File Manager
item in the Tools menu, as well as the Answer File
Manager button on the toolbar.

LUITOOLSCOMPONENTMANAGER 43100 Enables (true) or disables (false) the Component Manager
item in the Tools menu, as well as the Component
Manager button on the toolbar.

LUITOOLSCOMPONENTEXPLORER 43063 Enables (true) or disables (false) the Template Manager
item in the Tools menu, as well as the Template
Manager button on the toolbar. (HotDocs Developer only.)

LUITOOLSPUBLISHINGWIZARD 43051 Enables (true) or disables (false) the Publishing Wizard

HotDocs API

62

item in the Tools menu, as well as the Publishing
Wizard button on the toolbar. (HotDocs Developer only.)

LUITOOLSUPLOADANSWERS 43060 Enables (true) or disables (false) the Upload Answers item
in the Tools menu.

LUITOOLSREFRESHHDACACHE 43050 Enables (true) or disables (false) the Refresh Cache item in
the Tools menu.

LUIVIEWASSEMBLYQUEUE 14 Enables (true) or disables (false) the Assembly Queue item
in the Tools menu, as well as the Assembly Queue
button on the toolbar.

LUITEMPLATESETUPDATE 46417 Enables (true) or disables (false) the Update Template Sets
item in the Tools menu.

LUITOOLSOPTIONS 43010 Enables (true) or disables (false) the Options item in the
Tools menu.

LUITOOLSAUTOMATOR 46233 Enables (true) or disables (false) the HotDocs Automator
item in the Tools menu.

LUIHIDDENDATAREMOVER 46427 Enables (true) or disables (false) the Hidden Data
Remover... item in the Tools menu.

Help Menu

Name Value Description

LUIHELPMENU 6 Enables (true) or disables (false) the Help menu.

LUIHELPHOTDOCSHELP 57667 Enables (true) or disables (false) the HotDocs Help item in
the Help menu.

LUIHELPONLINESUPPORT 43058 Enables (true) or disables (false) the Online Support item in
the Help menu.

LUIHELPONLINEREGISTRATION 46287 Enables (true) or disables (false) the Online Registration
item in the Help menu.

LUIHELPABOUTHOTDOCS 57664 Enables (true) or disables (false) the About HotDocs item in
the Help menu.

HDMappingBackfill Enumeration

This enumeration is a set of modes for answer backfilling.

COM API

63

Backfill Modes

Name Value Description

Always 1 Always backfills answers.

DoNotAllow 3 Does not allow backfilling answers.

Never 0 Never backfills answers.

Prompt 2 Prompts to backfill answers.

HDOUTPUTTYPE Enumeration

This enumeration is a set of values that determine which format HotDocs uses when saving documents.

Document Type

Name Value Description

HD_OUTPUT_DOCUMENT 1 Document

HD_OUTPUT_ANSWERSUMMARY 2 Answer summary

HD_OUTPUT_QUESTIONSUMMARY 3 Question summary

HDPRODUCTFLAVOR Enumeration

This enumeration is a set of values that determines which HotDocs edition, or flavor, is running.

Product Flavors

Name Value Description

PLAYER 1 HotDocs Player

STANDARD 2 HotDocs Developer LE

PROFESSIONAL 3 HotDocs Developer

USER 4 HotDocs User

HotDocs API

64

HDServerFileType Enumeration

This enumeration is a set of values that determine which file type HotDocs uses when publishing files for
use with HotDocs Server.

Name Value Description

HDServerFilesJavaScript 2 JavaScript or .HVC file

HDServerFilesNone 0 No file

HDServerFilesSilverlight 4 Compiled Silverlight assembly

HDServerFilesTemplate 1 Template or component file

HDVARTYPE Enumeration

This enumeration is a set of values for component types in HotDocs. It is used in many places in the
HotDocs API, although not all values can be used in all places. (Some values are invalid depending on
where the value is used.)

Name Value Description

HD_ADDITIONALTEXT 12 Additional text

HD_CLAUSELIBTYPE 9 Clause library

HD_COMPUTATIONTYPE 6 Computation variable

HD_DATABASETYPE 8 Database

HD_DATEFORMAT 17 Date Format

HD_DATETYPE 3 Date variable

HD_DIALOG 13 Dialog component

HD_DOCUMENTTEXT 11 SPAN component text

HD_GROUPFORMAT 20 Group Format component

HD_MULTCHOICEFORMAT 19 Multiple Choice Format component

HD_MULTCHOICETYPE 5 Multiple Choice variable

COM API

65

HD_NUMBERFORMAT 16 Number Format component

HD_NUMBERTYPE 2 Number variable

HD_TEXTFORMAT 15 Text Format

HD_TEXTPATTERN 14 Text Pattern

HD_TEXTTYPE 1 Text variable

HD_TRUEFALSEFORMAT 18 True/False Format

HD_TRUEFALSETYPE 4 True/False variable

HD_UNANSWEREDTYPE 7 Unanswered (for values only)

HD_UNDEFINED 10 Undefined (indicates an error)

HotDocs.Answer Object

HotDocs.Answer Object

An Answer is the set of Values for a particular HotDocs variable. For example, the Answer for a non-
repeated variable consists of a single piece of data (text string, number, date, or other information) stored
in a single Value. The Answer for a repeated variable, however, consists of multiple Values—one for each
time the variable is repeated.

There are several ways to iterate through the Values of an Answer. If you know the repeat indexes for the
Value you want to retrieve, you can simply set the 0-based repeat indexes of the Answer to those indexes.
Thus, if you want to retrieve the second Value of a simple repeated variable, you could set the Answer's
repeat indexes to 1,-1,-1,-1 . (Unused indexes should be set to -1 .) Once these indexes are set, retrieving
the Answer's Value will return the data stored in the Value with the specified repeat indexes.

General Information

ProgID: HotDocs.Answer.11.0
HotDocs.Answer (version-independent)

CLSID: {4D509C2B-0223-47EB-95A5-CC8E98055F67}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is _Answer.

Name IID Added in

_Answer {DF34C5CA-1760-4262-9B56- Added in HotDocs 6.0

HotDocs API

66

24E3EDE60994}

_AnswerEvents {E485B97D-1BBF-4174-A97C-
4B03D5EB33C2}

Added in HotDocs 6.0

The _AnswerEvents interface designates an event sink interface that an application must
implement in order to receive event notifications from a HotDocs.Answer object.

Methods

Method Description

AddMultipleChoiceValue This method adds an additional value to a particular Multiple Choice
answer iteration.

ClearAskedFlag This method does nothing. (It was deprecated in HotDocs 6.01.)

Create This method creates a new HotDocs answer.

GetRepeatCount This method returns the number of repeated values at a certain level of
the repeat.

GetRepeatIndex This method returns the repeat index information for the current value.

IsMultipleChoiceValueSet This method indicates if a particular option in a Multiple Choice variable is
selected.

IterateValues This method starts a recursive descent of the values for an answer. It visits
each value for an answer and fires the Answer.OnValueFound event. In
many cases, this saves you (the integrator) from iterating through
combinations of repeat indices to find values in an answer tree.

SetRepeatIndex This method sets the current value of the Answer object to the value at the
specified repeat indexes.

Properties

Property Description

Application [Read-only] This property returns a reference to the Application object.

Name [Read-only] This property returns the name of the answer. This is a read-only
property because the Name is set using the Answer.Create method and
cannot be changed after the answer is created.

RepeatCount [Read-only] This property returns the number of repeated values at the
current level. The difference between this property and the
Answer.GetRepeatCount method is that this property returns the repeat count
for the current level only. The GetRepeatCount method returns the repeat
count for a level specified by a set of repeat indexes given in the method call.

COM API

67

Type [Read-only] This property returns the type of the Answer object.

Unanswered [Read/Write] This is a Boolean property that determines whether an answer is
marked as "Unanswered." If so, Unanswered clears the value at that repeat
level.

Value [Read/Write] This is a dynamic property that holds the value of the answer at
the current repeat index.

Events

Event Description

OnValueFoundEvent This event is fired for every value found for the particular answer. This event is
fired during the processing of the Answer.IterateValues method.

Example

The following Visual C# example opens an answer file and displays each answer it contains:

public class ExampleCode
{
 static string ansName;
 static string ansType;

 static void Main()
 {
 HotDocs.AnswerCollection ac = new HotDocs.AnswerCollection();
 ac.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("Variable\tAnswer\tType");

 foreach (HotDocs.Answer ans in ac)
 {
 ansName = ans.Name;
 ansType = getType(ans.Type);
 ans.OnValueFoundEvent += new
HotDocs._AnswerEvents_OnValueFoundEventEventHandler(ans_OnValueFoundEvent);
 ans.IterateValues();
 }
 Console.ReadKey();

 ac.Close();
 }

 static void ans_OnValueFoundEvent(object Value, int repeat1, int repeat2,
int repeat3, int repeat4)
 {
 string index = "";
 string ansValue = "";
 if (repeat1 > -1) index = "[" + (repeat1 + 1).ToString() + "] ";

HotDocs API

68

 //Check to see if the value is an array (multiple-select Multiple
Choice variable)
 if (Value.GetType() == typeof(System.Object[]))
 foreach (string s in (System.Object[])Value)
 {
 ansValue += s + "; ";
 }
 else
 ansValue = Value.ToString();

 Console.WriteLine(index + ansName + "\t" + ansValue + "\t" +
ansType);
 }

 static string getType(HotDocs.HDVARTYPE type)
 {
 switch (type)
 {
 case HotDocs.HDVARTYPE.HD_DATETYPE:
 return "Date";
 case HotDocs.HDVARTYPE.HD_MULTCHOICETYPE:
 return "Multiple Choice";
 case HotDocs.HDVARTYPE.HD_NUMBERTYPE:
 return "Number";
 case HotDocs.HDVARTYPE.HD_TEXTTYPE:
 return "Text";
 case HotDocs.HDVARTYPE.HD_TRUEFALSETYPE:
 return "True/False";
 default:
 return type.ToString();
 }
 }
}

Answer.AddMultipleChoiceValue Method

This method adds an additional value to a particular Multiple Choice answer iteration.

Only Multiple Choice variables specified as Select All That Apply will accept multiple values
for the same repeat iteration.

Syntax

void AddMultipleChoiceValue (string newValue)

Parameter Description

newValue The option text for the newly-selected option. If this text is not one of the

COM API

69

option text values in the component file, the value will be stored in the
answer file, but it will never be used because only values in the component
file are valid options.

Example

The following Visual C# example adds additional values to a Multiple Choice answer and displays a
message box with all answers for the variable:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.Answer ans = new HotDocs.Answer();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 HotDocs.HDVARTYPE vType = HotDocs.HDVARTYPE.HD_MULTCHOICETYPE;
 ans = asc.Item("Company Representative", ref vType);
 ans.AddMultipleChoiceValue("Ed Hall");
 ans.AddMultipleChoiceValue("Kim Schuster");

 object[] vals = (object[])ans.Value;
 string msg = "";
 for (int i = 0; i < vals.Length; i++)
 {
 msg = msg + vals[i].ToString() + "\r\n";
 }
 MessageBox.Show(msg);

 asc.Save(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 asc.Close();
 }
}

Answer.ClearAskedFlag Method

This method does nothing. (It was deprecated in HotDocs 6.01.)

Syntax

void ClearAskedFlag ()

HotDocs API

70

Answer.Create Method

This method creates a new HotDocs answer.

Syntax

void Create (string ansName, HotDocs.HDVARTYPE valType)

Parameter Description

ansName The name of the variable for this answer.

valType The variable type for this answer. This can be one of the following values from
the HDVARTYPE enumeration:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

Example

The following Visual C# example creates a new answer, assigns it a value, and adds it to an answer file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.Answer ans = new HotDocs.Answer();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 ans.Create("Employee Name", HotDocs.HDVARTYPE.HD_TEXTTYPE);
 ans.Value = "John Simpson";
 asc.Add(ans);
 asc.Save(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 asc.Close();
 }
}

COM API

71

Answer.GetRepeatCount Method

This method returns the number of repeated values at a certain level of the repeat.

Syntax

int GetRepeatCount (int repeat1, int repeat2, int repeat3, int repeat4)

Parameter Description

repeat1 First repeat index for the specified value.

repeat2 Second repeat index for the specified value.

repeat3 Third repeat index for the specified value.

repeat4 Fourth repeat index for the specified value.

Return Value

The repeat count for the specified value.

The RepeatCount property returns the repeat count at the current level; however, this method
returns the repeat count at an arbitrary level without changing the repeat indexes for the Answer
object.

Any unused repeat indexes must be set to -1. For instance, if you want to reference the fourth
iteration of the first level of a repeated answer, you would use 3,-1,-1,-1 as the repeat index.

Example

The following Visual C# example displays the number of repeated values at the first repeat level:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.Answer ans = new HotDocs.Answer();
 HotDocs.HDVARTYPE vType = HotDocs.HDVARTYPE.HD_TEXTTYPE;

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 ans = asc.Item("Beneficiary Name", ref vType);
 MessageBox.Show(ans.GetRepeatCount(0, -1, -1, -1).ToString());

 asc.Close();
 }
}

HotDocs API

72

Answer.GetRepeatIndex Method

This method returns the repeat index information for the current value.

Syntax

void GetRepeatIndex (out int repeat1, out int repeat2, out int repeat3, out int
repeat4)

Parameter Description

repeat1 First repeat index for current value.

repeat2 Second repeat index for current value.

repeat3 Third repeat index for current value.

repeat4 Fourth repeat index for current value.

Example

The following Visual C# example sets the repeat indices for an answer and then displays the indices using
GetRepeatIndex :

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.Answer ans = new HotDocs.Answer();
 HotDocs.HDVARTYPE vType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 int rpt1, rpt2, rpt3, rpt4;

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 ans = asc.Item("Beneficiary Name", ref vType);
 ans.SetRepeatIndex(1, 0, 0, 0);

 ans.GetRepeatIndex(out rpt1,out rpt2,out rpt3,out rpt4);
 MessageBox.Show(rpt1 + ", " + rpt2 + ", " + rpt3 + ", " + rpt4);

 asc.Close();
 }
}

Answer.IsMultipleChoiceValueSet Method

COM API

73

This method indicates if a particular option in a Multiple Choice variable is selected.

For example, if you have a Multiple Choice variable with options red, blue, and yellow, this method could
be used to determine if "yellow" has been selected.

Syntax

bool IsMultipleChoiceValueSet (string chkValue)

Parameter Description

chkValue The option text for the option.

Return Value

A Boolean value indicating if the option is selected.

Example

The following Visual C# example indicates whether or not a particular Multiple Choice option is selected
in an answer file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.Answer ans = new HotDocs.Answer();
 HotDocs.HDVARTYPE vType = HotDocs.HDVARTYPE.HD_MULTCHOICETYPE;

 asc.Create(@"C:\Documents\HotDocs\Answers\Color.anx");
 ans = asc.Item("ColorMC", ref vType);

 MessageBox.Show(ans.IsMultipleChoiceValueSet("yellow").ToString());
 }
}

Answer.IterateValues Method

This method starts a recursive descent of the values for an answer. It visits each value for an answer and
fires the Answer.OnValueFound event. In many cases, this saves you (the integrator) from iterating through
combinations of repeat indices to find values in an answer tree.

Syntax

HotDocs API

74

void IterateValues ()

Example

The following Visual C# example opens an answer file and displays each answer it contains:

public class ExampleCode
{
 static string ansName;
 static string ansType;

 static void Main()
 {
 HotDocs.AnswerCollection ac = new HotDocs.AnswerCollection();
 ac.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("Variable\tAnswer\tType");

 foreach (HotDocs.Answer ans in ac)
 {
 ansName = ans.Name;
 ansType = getType(ans.Type);
 ans.OnValueFoundEvent += new
HotDocs._AnswerEvents_OnValueFoundEventEventHandler(ans_OnValueFoundEvent);
 ans.IterateValues();
 }
 Console.ReadKey();

 ac.Close();
 }

 static void ans_OnValueFoundEvent(object Value, int repeat1, int repeat2,
int repeat3, int repeat4)
 {
 string index = "";
 string ansValue = "";
 if (repeat1 > -1) index = "[" + (repeat1 + 1).ToString() + "] ";
 //Check to see if the value is an array (multiple-select Multiple
Choice variable)
 if (Value.GetType() == typeof(System.Object[]))
 foreach (string s in (System.Object[])Value)
 {
 ansValue += s + "; ";
 }
 else
 ansValue = Value.ToString();

 Console.WriteLine(index + ansName + "\t" + ansValue + "\t" +
ansType);
 }

 static string getType(HotDocs.HDVARTYPE type)
 {
 switch (type)
 {

COM API

75

 case HotDocs.HDVARTYPE.HD_DATETYPE:
 return "Date";
 case HotDocs.HDVARTYPE.HD_MULTCHOICETYPE:
 return "Multiple Choice";
 case HotDocs.HDVARTYPE.HD_NUMBERTYPE:
 return "Number";
 case HotDocs.HDVARTYPE.HD_TEXTTYPE:
 return "Text";
 case HotDocs.HDVARTYPE.HD_TRUEFALSETYPE:
 return "True/False";
 default:
 return type.ToString();
 }
 }
}

Answer.SetRepeatIndex Method

This method sets the current value of the Answer object to the value at the specified repeat indexes.

Syntax

void SetRepeatIndex (int repeat1, int repeat2, int repeat3, int repeat4)

Parameter Description

repeat1 First repeat index for the desired value.

repeat2 Second repeat index for the desired value.

repeat3 Third repeat index for the desired value.

repeat4 Fourth repeat index for the desired value.

Any unused repeat indexes must be set to -1. For instance, if you want to reference the fourth
iteration of the first level of a repeated answer, you would use 3,-1,-1,-1 as the repeat index.

Example

The following Visual C# example uses SetRepeatIndex to add two names and e-mail addresses to an
answer file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();

HotDocs API

76

 HotDocs.Answer ans = new HotDocs.Answer();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 asc.FileFormat = HotDocs.HDAFFORMAT.HD2009Format;
 HotDocs.HDVARTYPE vType = HotDocs.HDVARTYPE.HD_TEXTTYPE;

 ans = asc.Item("Name", ref vType);
 ans.SetRepeatIndex(0, -1, -1, -1);
 ans.Value = "John";
 asc.Add(ans);

 ans = asc.Item("Email", ref vType);
 ans.SetRepeatIndex(0, 0, -1, -1);
 ans.Value = "John@beatles.com";
 asc.Add(ans);

 ans = asc.Item("Name", ref vType);
 ans.SetRepeatIndex(1, -1, -1, -1);
 ans.Value = "Paul";
 asc.Add(ans);

 ans = asc.Item("Email", ref vType);
 ans.SetRepeatIndex(1, 0, -1, -1);
 ans.Value = "Paul@beatles.com";
 asc.Add(ans);

 asc.Save(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 asc.Close();

 ans = null;
 asc = null;
 }
}

Answer.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

COM API

77

Answer.Name Property

[Read-only] This property returns the name of the answer. This is a read-only property because the Name
is set using the Answer.Create method and cannot be changed after the answer is created.

Syntax

string Name [get]

Answer.RepeatCount Property

[Read-only] This property returns the number of repeated values at the current level. The difference
between this property and the Answer.GetRepeatCount method is that this property returns the repeat
count for the current level only. The GetRepeatCount method returns the repeat count for a level specified
by a set of repeat indexes given in the method call.

Syntax

int RepeatCount [get]

Answer.Type Property

[Read-only] This property returns the type of the Answer object.

The Type may be any one of the following values from the HDVARTYPE enumeration:

• HD_TEXTTYPE

• HD_NUMBERTYPE

• HD_DATETYPE

• HD_TRUEFALSETYPE

• HD_MULTCHOICETYPE

• HD_DOCUMENTTEXT

HotDocs API

78

• HD_CLAUSELIBTYPE

• HD_DATABASETYPE

Syntax

HotDocs.HDVARTYPE Type [get]

Answer.Unanswered Property

[Read/Write] This is a Boolean property that determines whether an answer is marked as "Unanswered." If
so, Unanswered clears the value at that repeat level.

This property is True in the following situations:

• Repeated values. Placeholder values are put in the answer file in cases where not all the values at
a repeat level are answered. For example if a repeated value is answered at positions 1, 2, and 4
then position 3 will have an unanswered value.

• AnswerCollections that have not yet been written to disk. You can create any unanswered values
you want in memory. This could happen through an interview or manipulation of the
AnswerCollection.

You can use the Unanswered property to delete values from the AnswerCollection. If you set this property
to True, then the next time the AnswerCollection is saved to disk, no answer will be saved for that value.

Syntax

bool Unanswered [set, get]

Answer.Value Property

[Read/Write] This is a dynamic property that holds the value of the answer at the current repeat index.

Syntax

dynamic Value [set, get]

The data type can be interpreted like this:

COM API

79

Type Data Type Description

HD_TEXTTYPE string Multi-line Text answers will contain carriage return (cr)
and line feed (lf) characters to delimit lines.

HD_NUMBERTYPE number Number value.

HD_DATETYPE dateTime Date value.

HD_TRUEFALSETYPE boolean True/False (Boolean) value.

HD_MULTCHOICETYPE string
array | string

Multiple Choice values can be interpreted several ways,
depending on whether the Multiple Choice variable is
specified as single-select or multiple-select:

• When retrieving the single value of a Multiple
Choice variable, the value will be returned as a
string.

• When retrieving multiple values, the value will be
returned as an array of strings.

Example (Visual C#)

A multi-line value can be set by adding the carriage return and line feed
characters as follows:
class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.Answer ans = new HotDocs.Answer();

 asc.Create(@"C:\temp\AnswersFile.anx");
 HotDocs.HDVARTYPE vType = HotDocs.HDVARTYPE.HD_MULTCHOICETYPE;
 ans = asc.Item("multiplechoice", ref vType);

 MessageBox.Show(ans.Value = "Line 1" + "\r\n" + "Line 2" + "\r\n" +
"Line 3");

 asc.Close();
 }
}

If you want to retrieve multiple values from a multiple-select Multiple
Choice variable,
you can retrieve an array of strings like this:

 for (int i = 0; i < ans.Value.Length; i++)
 {
 MessageBox.Show(ans.Value[i]);
 }

HotDocs API

80

To set a single value of a Multiple Choice variable, you can use the Value
property and a string (VT_BSTR),
or you can use the AddMultipleChoiceValue method:

 ans.Value = "Single Value";

 //or
 ans.AddMultipleChoiceValue("Single Value");

To set multiple values of a multiple-select Multiple Choice variable, you can
set Value using a
single string that contains values delimited by a vertical bar (|)
character, an array of strings,
or you can use a series of calls to the AddMultipleChoiceValue method:

 ans.Value = "FirstValue|SecondValue|ThirdValue";

 //or
 string[] values = new string[3];

 values[0] = "FirstValue";
 values[1] = "SecondValue";
 values[2] = "ThridValue";
 ans.Value = values;

 //or
 ans.AddMultipleChoiceValue("FirstValue");
 ans.AddMultipleChoiceValue("SecondValue");
 ans.AddMultipleChoiceValue("ThirdValue");

Answer.OnValueFoundEvent Event

This event is fired for every value found for the particular answer. This event is fired during the processing
of the Answer.IterateValues method.

Syntax

OnValueFoundEvent (value, repeat1, repeat2, repeat3, repeat4)

Parameter Description

VARIANT value The value found. This VARIANT is interpreted using the same rules as for the
Value property.

long* repeat1 First repeat index for current value.

long* repeat2 Second repeat index for current value.

COM API

81

long* repeat3 Third repeat index for current value.

long* repeat4 Fourth repeat index for current value.

Example

The following Visual C# example opens an answer file and displays each answer it contains:

public class ExampleCode
{
 static string ansName;
 static string ansType;

 static void Main()
 {
 HotDocs.AnswerCollection ac = new HotDocs.AnswerCollection();
 ac.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("Variable\tAnswer\tType");

 foreach (HotDocs.Answer ans in ac)
 {
 ansName = ans.Name;
 ansType = getType(ans.Type);
 ans.OnValueFoundEvent += new
HotDocs._AnswerEvents_OnValueFoundEventEventHandler(ans_OnValueFoundEvent);
 ans.IterateValues();
 }
 Console.ReadKey();

 ac.Close();
 }

 static void ans_OnValueFoundEvent(object Value, int repeat1, int repeat2,
int repeat3, int repeat4)
 {
 string index = "";
 string ansValue = "";
 if (repeat1 > -1) index = "[" + (repeat1 + 1).ToString() + "] ";
 //Check to see if the value is an array (multiple-select Multiple
Choice variable)
 if (Value.GetType() == typeof(System.Object[]))
 foreach (string s in (System.Object[])Value)
 {
 ansValue += s + "; ";
 }
 else
 ansValue = Value.ToString();

 Console.WriteLine(index + ansName + "\t" + ansValue + "\t" +
ansType);
 }

 static string getType(HotDocs.HDVARTYPE type)

HotDocs API

82

 {
 switch (type)
 {
 case HotDocs.HDVARTYPE.HD_DATETYPE:
 return "Date";
 case HotDocs.HDVARTYPE.HD_MULTCHOICETYPE:
 return "Multiple Choice";
 case HotDocs.HDVARTYPE.HD_NUMBERTYPE:
 return "Number";
 case HotDocs.HDVARTYPE.HD_TEXTTYPE:
 return "Text";
 case HotDocs.HDVARTYPE.HD_TRUEFALSETYPE:
 return "True/False";
 default:
 return type.ToString();
 }
 }
}

HotDocs.AnswerCollection Object

HotDocs.AnswerCollection Object

This object represents sets of answers, which most frequently come from HotDocs answer files saved on
disk. However, this is not the only way answers are stored—an AnswerCollection object can represent
answers that were input from an interview, retrieved from a database, or imported from any other source
you tell your program to use.

AnswerCollection objects are also used elsewhere in the HotDocs API to specify a set of answers to use in
an assembly, and when responding to events fired from the Application and Assembly objects.

General Information

ProgID: HotDocs.AnswerCollection.11.0
HotDocs.AnswerCollection (version-independent)

CLSID: {F6B3FF63-D730-4DCE-802D-0FAED25E7B72}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_AnswerCollection2.

Name IID Added in

_AnswerCollection {3E419C82-EED2-4FD4-BD37-
C4BC9A9FEFB1}

Added in HotDocs 6.0

COM API

83

_AnswerCollection2 {A9BED2DE-BAE7-4BF9-93D4-
E944E81A6F8E}

Added in HotDocs 2005 SP2

Methods

Method Description

Add This method adds a new answer to the AnswerCollection. This answer must
have already been initialized using the Create method.

Close If an AnswerCollection is backed by an answer file on disk, the answer file is
kept open while the AnswerCollection object is in use. This method closes
the answer file on disk.

Create This method initializes the AnswerCollection object. You must call this
method before using a new AnswerCollection object.

Item This method retrieves an Answer object from the AnswerCollection.

Overlay This method overlays the filename answer file on top of the existing
answer set.

Save This method saves the AnswerCollection to a HotDocs answer file. The file
type (.ANS or .ANX) is determined by the FileFormat property.

UploadAnswerCollection This method uploads the AnswerCollection to the specified location (url).

Properties

Property Description

Application [Read-only] This property returns a reference to the Application object.

Count [Read-only] This property returns the number of Answer objects in the
AnswerCollection.

DefaultAnswerFile [Read/Write] This property returns the default answer file used by the
AnswerCollection. Using a default answer file is similar to using an overlay
answer file except that the answers are underlayed into the answer set. (For
details, see Create a Default Answer File.)

Description [Read/Write] This property sets or returns the description of the
AnswerCollection.

FileFormat [Read/Write] This property determines the answer file format.

FileName [Read-only] This property returns the file name of the answer file represented
by the AnswerCollection object. To specify the file path for the answer file,
pass the file path and name to either the Create or Save method.

Modified [Read-only] This Boolean property indicates if an AnswerCollection has been
modified or not.

HotDocs API

84

Title [Read/Write] This property sets or returns the title of the AnswerCollection.

XML [Read-only] This property returns the AnswerCollection as an XML string.

Example

The following Visual C# example opens an answer file and displays each answer it contains:

public class ExampleCode
{
 static string ansName;
 static string ansType;

 static void Main()
 {
 HotDocs.AnswerCollection ac = new HotDocs.AnswerCollection();
 ac.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("Variable\tAnswer\tType");

 foreach (HotDocs.Answer ans in ac)
 {
 ansName = ans.Name;
 ansType = getType(ans.Type);
 ans.OnValueFoundEvent += new
HotDocs._AnswerEvents_OnValueFoundEventEventHandler(ans_OnValueFoundEvent);
 ans.IterateValues();
 }
 Console.ReadKey();

 ac.Close();
 }

 static void ans_OnValueFoundEvent(object Value, int repeat1, int repeat2,
int repeat3, int repeat4)
 {
 string index = "";
 string ansValue = "";
 if (repeat1 > -1) index = "[" + (repeat1 + 1).ToString() + "] ";
 //Check to see if the value is an array (multiple-select Multiple
Choice variable)
 if (Value.GetType() == typeof(System.Object[]))
 foreach (string s in (System.Object[])Value)
 {
 ansValue += s + "; ";
 }
 else
 ansValue = Value.ToString();

 Console.WriteLine(index + ansName + "\t" + ansValue + "\t" +
ansType);
 }

COM API

85

 static string getType(HotDocs.HDVARTYPE type)
 {
 switch (type)
 {
 case HotDocs.HDVARTYPE.HD_DATETYPE:
 return "Date";
 case HotDocs.HDVARTYPE.HD_MULTCHOICETYPE:
 return "Multiple Choice";
 case HotDocs.HDVARTYPE.HD_NUMBERTYPE:
 return "Number";
 case HotDocs.HDVARTYPE.HD_TEXTTYPE:
 return "Text";
 case HotDocs.HDVARTYPE.HD_TRUEFALSETYPE:
 return "True/False";
 default:
 return type.ToString();
 }
 }
}

AnswerCollection.Add Method

This method adds a new answer to the AnswerCollection . This answer must have already been
initialized using the Create method.

Syntax

void Add (HotDocs.Answer newanswer)

Parameters Description

newanswer The Answer object to be added to the collection.

Example

The following Visual C# example adds two answers to an answer file, then saves and closes it.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection ac = new HotDocs.AnswerCollection();
 HotDocs.Answer ans;

 ac.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

HotDocs API

86

 ans = new HotDocs.Answer();
 ans.Create("Agreement Date", HotDocs.HDVARTYPE.HD_DATETYPE);
 ans.Value = "01/01/2009";
 ac.Add(ans);

 ans = new HotDocs.Answer();
 ans.Create("Company Representative",
HotDocs.HDVARTYPE.HD_MULTCHOICETYPE);
 ans.Value = "Stephanie Walker";
 ac.Add(ans);
 ans = null;

 ac.Save(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 ac.Close();
 }
}

AnswerCollection.Close Method

If an AnswerCollection is backed by an answer file on disk, the answer file is kept open while the
AnswerCollection object is in use. This method closes the answer file on disk.

Syntax

void Close ()

Example

The following Visual C# example creates a new AnswerCollection object for a given answer file and
displays the number of answers stored in the file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 Console.WriteLine("The answer file has " + asc.Count.ToString() + "
answers.");

 asc.Close();
 }
}

COM API

87

AnswerCollection.Create Method

This method initializes the AnswerCollection object. You must call this method before using a
new AnswerCollection object.

Syntax

void Create (string answerFileName)

Parameters Description

answerFileName The path for the answer file needed to start an assembly. If this file does not
exist, a new file will be created. If the path does exist then the file will be
opened. If this parameter is an empty string ("") then no file will be used and
the AnswerCollection will only exist as long as it is in memory. An
AnswerCollection object created in this manner can later be saved to a file
using the Save method.

Example

The following Visual C# example creates a new AnswerCollectionobject for a given answer file and
displays the number of answers stored in the file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");
 Console.WriteLine("The answer file has " + asc.Count.ToString() + "
answers.");

 asc.Close();
 }
}

AnswerCollection.Item Method

This method retrieves an Answer object from the AnswerCollection .

The index parameter can either be a number or a string. If it is a number, then the index Answer object in
the collection will be retrieved and the vartype parameter will be set to the HDVARTYPE value for the

HotDocs API

88

answer. If index is a string, it is interpreted as an Answer name and the Answer object with the name
matching index and the type vartype. HotDocs answers are identified by their name and type, so vartype
must be set to the correct HDVARTYPE when calling this method with a string for the index parameter.

Syntax

HotDocs.Answer Item (object index, ref HotDocs.HDVARTYPE varType)

Parameters Description

index Either a number representing the position of the desired Answer object in the
collection, or a string representing the name of the desired Answer object. If
index is a string, then vartype must be set correctly also.

vartype [optional] When calling Item() with index representing a string, vartype must
be the correct HDVARTYPE for the desired Answer object. When the method
returns, this parameter will be set to the correct HDVARTYPE for the Answer
object in pItem.

Return Value

The Answer object requested. If the Answer object could not be located, a new Answer object is created
with an Unanswered value.

AnswerCollection.Overlay Method

This method overlays the filename answer file on top of the existing answer set.

Syntax

void Overlay (string overlayFileName)

Parameters Description

overlayFileName The path for the answer file to be overlayed on top of the answer set.

Return Value

An integer indicating the index of the new Value within the Answer object.

COM API

89

AnswerCollection.Save Method

This method saves the AnswerCollection to a HotDocs answer file. The file type (.ANS or
.ANX) is determined by the FileFormat property.

Syntax

void Save (string answerFileName)

Parameters Description

answerFileName [optional] The path and file name for the resulting answer file. If the answer
file already exists, it will be overwritten. If the file name was passed into the
Create method, this parameter is not necessary.

Example

The following Visual C# example adds two answers to an answer file, then saves and closes it.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection ac = new HotDocs.AnswerCollection();
 HotDocs.Answer ans;

 ac.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 ans = new HotDocs.Answer();
 ans.Create("Agreement Date", HotDocs.HDVARTYPE.HD_DATETYPE);
 ans.Value = "01/01/2009";
 ac.Add(ans);

 ans = new HotDocs.Answer();
 ans.Create("Company Representative",
HotDocs.HDVARTYPE.HD_MULTCHOICETYPE);
 ans.Value = "Stephanie Walker";
 ac.Add(ans);
 ans = null;

 ac.Save(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 ac.Close();
 }
}

HotDocs API

90

AnswerCollection.UploadAnswerCollection Method

This method uploads the AnswerCollection to the specified location (url).

Executing this method is similar to specifying a URL in the Upload Answers component file
property. (For details, see the HotDocs Desktop Help File.)

Syntax

void UploadAnswerCollection (string url, HotDocs.HDANSWERUPLOADFORMAT format)

Parameters Description

url The destination for the uploaded answers. It can be an HTTP or HTTPS
location.

format The format for the uploaded answers. It can be one of the following values
from the HDANSWERUPLOADFORMAT enumeration:

• HD_DEFAULTFORMAT: the delimited format used by HotDocs 5.
• HD_XMLFORMAT: the XML format used by HotDocs ANX answer files

and HotDocs Server interviews. It is the preferred format because it is
much easier to work with once it gets to the server.

AnswerCollection.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

AnswerCollection.Count Property

COM API

91

This property returns the number of Answer objects in the AnswerCollection .

Syntax

int Count [get]

Example

The following Visual C# example creates a new AnswerCollection object for a given answer file and
displays the file name, format (type), title, description, and number of answers stored in the file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("File: {0}\n", asc.FileName);
 Console.WriteLine("Format (Type): {0}\n", asc.FileFormat);
 Console.WriteLine("Title: {0}\n", asc.Title);
 Console.WriteLine("Description: {0}\n", asc.Description);
 Console.WriteLine("Count: {0}\n", asc.Count);

 asc.Close();
 }
}

AnswerCollection.DefaultAnswerFile Property

[Read/Write] This property returns the default answer file used by the AnswerCollection. Using a default
answer file is similar to using an overlay answer file except that the answers are underlayed into the
answer set. (For details, see Create a Default Answer File.)

Syntax

string DefaultAnswerFile [set, get]

AnswerCollection.Description Property

HotDocs API

92

[Read/Write] This property sets or returns the description of the AnswerCollection.

Syntax

string Description [set, get]

Example

The following Visual C# example creates a new AnswerCollection object for a given answer file and
displays the file name, format (type), title, description, and number of answers stored in the file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("File: {0}\n", asc.FileName);
 Console.WriteLine("Format (Type): {0}\n", asc.FileFormat);
 Console.WriteLine("Title: {0}\n", asc.Title);
 Console.WriteLine("Description: {0}\n", asc.Description);
 Console.WriteLine("Count: {0}\n", asc.Count);

 asc.Close();
 }
}

AnswerCollection.FileFormat Property

[Read/Write] This property determines the answer file format.

The FileFormat may be one of the following values from the HDAFFORMAT enumeration:

• PreHD2009Format
• HD2009Format

All answer files are written in XML format by HotDocs 2009 and later. The difference between a
"HotDocs 2009-10 Format" XML answer file and a "Pre-HotDocs 2009 Format" XML answer
file is that HotDocs 2009-10 answer files use UTF-8 encoding and they do not contain an
embedded DTD. If your answer files must be read by versions of HotDocs earlier than 2009, use
the PreHD2009Format.

COM API

93

Syntax

HotDocs.HDAFFORMAT FileFormat [set, get]

Example

The following Visual C# example creates a new AnswerCollection object for a given answer file and
displays the file name, format (type), title, description, and number of answers stored in the file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("File: {0}\n", asc.FileName);
 Console.WriteLine("Format (Type): {0}\n", asc.FileFormat);
 Console.WriteLine("Title: {0}\n", asc.Title);
 Console.WriteLine("Description: {0}\n", asc.Description);
 Console.WriteLine("Count: {0}\n", asc.Count);

 asc.Close();
 }
}

AnswerCollection.FileName Property

[Read-only] This property returns the file name of the answer file represented by the AnswerCollection
object. To specify the file path for the answer file, pass the file path and name to either the Create or Save
method.

Syntax

string FileName [get]

Example

The following Visual C# example creates a new AnswerCollection object for a given answer file and
displays the file name, format (type), title, description, and number of answers stored in the file:

public class ExampleCode
{
 static void Main()

HotDocs API

94

 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("File: {0}\n", asc.FileName);
 Console.WriteLine("Format (Type): {0}\n", asc.FileFormat);
 Console.WriteLine("Title: {0}\n", asc.Title);
 Console.WriteLine("Description: {0}\n", asc.Description);
 Console.WriteLine("Count: {0}\n", asc.Count);

 asc.Close();
 }
}

AnswerCollection.Modified Property

[Read-only] This Boolean property indicates if an AnswerCollection has been modified or not.

Syntax

bool Modified [get]

Example

The following Visual C# example shows the value of the Modified property before and after making a
change to one of the answers in the collection.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 HotDocs.HDVARTYPE iType = HotDocs.HDVARTYPE.HD_TEXTTYPE;

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx ");
 asc.FileFormat = HotDocs.HDAFFORMAT.HD2009Format;
 Console.WriteLine("Current Modified Status (before change):
{0}", asc.Modified); asc.Item("Employee Name", ref iType).Value = "Wilma
Hernandez";
 Console.WriteLine("Current Modified Status (after change):
{0}", asc.Modified);

 asc.Close();
 }
}

COM API

95

AnswerCollection.Title Property

[Read/Write] This property sets or returns the title of the AnswerCollection.

Syntax

string Title [set, get]

Example

The following Visual C# example creates a new AnswerCollection object for a given answer file and
displays the file name, format (type), title, description, and number of answers stored in the file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();

 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine("File: {0}\n", asc.FileName);
 Console.WriteLine("Format (Type): {0}\n", asc.FileFormat);
 Console.WriteLine("Title: {0}\n", asc.Title);
 Console.WriteLine("Description: {0}\n", asc.Description);
 Console.WriteLine("Count: {0}\n", asc.Count);

 asc.Close();
 }
}

AnswerCollection.XML Property

[Read-only] This property returns the AnswerCollection as an XML string.

Syntax

string XML [get]

Example

The following Visual C# example displays the answer file as an XML string.

HotDocs API

96

public class ExampleCode
{
 static void Main()
 {
 HotDocs.AnswerCollection asc = new HotDocs.AnswerCollection();
 asc.Create(@"C:\Documents\HotDocs\Answers\AnswerFile.anx");

 Console.WriteLine(asc.XML);

 asc.Close();
 }
}
Here is what the XML string might look like:
<?xml version="1.0" encoding="Windows-1252" standalone="yes"?>
<AnswerSet title = "Jane Doe" version = "1.1">
 <Answer name = "Agreement Date">
 <RptValue>
 <DateValue>3/8/2008</DateValue>
 <DateValue>2/8/2008</DateValue>
 <DateValue unans = "true"/>
 </RptValue>
 </Answer>
 <Answer name = "Employee Gender">
 <MCValue>
 <SelValue>Male</SelValue>
 </MCValue>
 </Answer>
 <Answer name = "(ANSWER FILE DESCRIPTION)">
 <TextValue></TextValue>
 </Answer>
 <Answer name = "(ANSWER FILE HISTORY)">
 <TextValue>Last Will and Testament : January 31, 2008,
15:24</TextValue>
 </Answer>
 <Answer name = "Employee Name">
 <TextValue>Raylene Schofield</TextValue>
 </Answer>
</AnswerSet>

HotDocs.Application Object

HotDocs.Application Object

The Application object represents the library window in HotDocs and the main functional uses of HotDocs.
It is used to customize the user interface of the library window and control the display of the library. It
also serves as the root of the HotDocs object model.

COM API

97

The Application class is a singleton class, which means that one and only one instance can exist on a
Windows desktop at a time. The class factory for this class enforces this rule. When an application
requests an instance of this class, the class factory checks to see if an instance already exists. If so, the
requesting application is given a pointer to this existent instance. This means that an integration needs to
be aware that other applications or the user may be changing the state of the object. For instance, care
must be taken when deleting all the Assembly objects in the assembly queue so that your integration does
not remove assemblies started by the user or other applications.

Reference counting of the Application object can be a tricky concept. Because of its shared-singleton
nature, an integration cannot assume that the server (hotdocs.exe) will unload when the integration
releases all of the references it holds to the COM objects. There are many clients which hold references to
the Application object. The most visible of these is the user interface. The library interface is a client of the
Application object. When it is visible, it holds a reference to the Application object. When it is hidden, it
releases its reference. This means that if your program makes the HotDocs library interface visible, then
exits, HotDocs will continue to run because the interface still holds a COM reference. To make sure that
things are in an appropriate state when your application is finished with HotDocs, you must make sure the
state of the user interface is the same as when you started.

General information

ProgID: HotDocs.Application.11.0
HotDocs.Application (version-independent)

CLSID: {8A202ADA-F14D-4F1B-86F9-8B18EE76E0C1}
The following table shows the name and IID for each interface, as well as the version of
HotDocs in which it was introduced. The primary interface and the main public interface
exposed by this object is _Application4.
Name IID Added in

_Application {991DE9DD-D19A-4EA0-9A07-
D56F0CA44FE9}

Added in HotDocs 6.0

_Application2 {991DE9DD-D19A-4EA0-9A07-
D56F0CA44FEA}

Added in HotDocs 6.1 SP1

_Application3 {991DE9DD-D19A-4EA0-9A07-
D56F0CA44FEB}

Added in HotDocs 2005

_Application4 {991DE9DD-D19A-4EA0-9A07-
D56F0CA44FEC}

Added in HotDocs 2005 SP2

_Application5 {5C438478-E1F3-47ac-9012-EB497A45B704} Added in HotDocs 2008

_Application6 {D5CC34E3-13FE-46eb-88BE-
B00DC4924505}

Added in HotDocs 10

_Application7 {FCE63E5C-BA73-413b-9331-19B8FC556061} Added for HotDocs 10.2

_Application8 {9DA30382-4BA9-44B6-BD51-
D8E2D28E2E9D}

Added for HotDocs 11.0

_ApplicationEvents {287BF4B6-F8A1-4D96-B9A6- Added in HotDocs 6.0

HotDocs API

98

D1F6A56AB86C}

The _ApplicationEvents interface designates an event sink interface that an application must
implement in order to receive event notifications from a HotDocs.Application object.

Methods

Method Description

AddUserMenuItem This method allows you to add custom menu items to the HotDocs library
menus. For example, you can add an item to the HotDocs Help menu to
display your own "About" dialog box. When a user selects the item from
the menu, the OnUserMenuItemClickedEvent event is fired to notify your
application that the menu item was chosen.

AddUserMenuItem2 This method allows you to add custom menu items to the HotDocs library
menus. For example, you can add an item to the HotDocs Help menu to
display your own "About" dialog box. When a user selects the item from
the menu, the OnUserMenuItemClickedEvent event is fired to notify your
application that the menu item was chosen.

ConvertModelToTemplate This method converts a HotDocs Model to a HotDocs template.

ConvertTemplateToModel This method converts a HotDocs template to a HotDocs Model.

CreateTemplatePackage

This method creates a template package for use with HotDocs Cloud
Services or the HotDocs Open SDK.

DeleteUserMenuItem This method allows you to remove custom items that were added to the
HotDocs library window menus using AddUserMenuItem or
AddUserMenuItem2. It uses the handle returned when the menu item was
added to determine which menu item to remove.

getDefaultPath This method returns the default path HotDocs uses for the specified file
type. You can use this method to determine the default path for any type
of file in the HDDirectory enumeration.

GetHotDocsSetting This method returns a HotDocs setting from the system registry. HotDocs
looks first in the HKEY_CURRENT_USER registry hive, followed by the
HKEY_LOCAL_MACHINE hive. If the setting is not found in either hive, the
defaultValue is returned.

OpenLibrary This method opens a HotDocs library (.HDL) file. If another library is
already open, OpenLibrary closes the other library and opens the library
specified in the libPath parameter.

PrintDocument This method prints the specified document.

PublishOnlineFiles This method publishes a template for use with HotDocs Server. Like the
Publishing Wizard (available in the HotDocs Tools menu), this method
scans the template for any inserted templates and builds the JavaScript

COM API

99

(.JS) and HotDocs Variable Collection (.HVC) files required for HotDocs
Server. These .JS and .HVC files are then copied to an output folder along
with the template files.

PublishOnlineFiles2

Use this method to publish a template for use with HotDocs Server.

ResolveReferencePath This method converts a reference path to a full file system path. For
example, if you use SelectTemplate2 to get the path of a selected
template that includes a reference path (e.g., ^PUBTest\template.rtf), this
method can look up the reference path keyword and return a full path
(e.g., C:\HotDocs\Templates\template.rtf).

RetrieveUrlFile This method retrieves a file from the specified URL.

SaveDocAsPDF This method converts a document file to a PDF file using HotDocs PDF
Advantage. The conversion is done automatically, so no user intervention
is necessary, although some user interface may be displayed.

SelectMultipleTemplates This method opens the specified library in a modal dialog box, allowing
users to select multiple templates by pressing Shift or Ctrl as they click
templates. The selected templates are then passed back to the integrating
program in a SAFEARRAY structure.

SelectMultipleTemplates2 This method opens the specified library in a modal dialog box, allowing
users to select multiple templates by pressing Shift or Ctrl as they click
templates. The selected templates are then passed back to the integrating
program in a SAFEARRAY structure.

SelectTemplate This method opens a modal dialog that displays the specified library,
allowing the user to select a template. The path, title, and description of
the selected template are then passed back to the integrating program.

SelectTemplate2 This method opens the specified library in a modal dialog box, allowing
users to select a single template. The path, title, and description of the
selected template are then passed back to the integrating program.

SendToWordProcessor This method sends a document specified in the docFileName parameter
to the word processor.

SetUserInterfaceItem This method sets the state for various features (elements) of the HotDocs
library window. For example, you can use this method to disable features
your integration users should not have access to, or you can enable
features users may have disabled.

Properties

Property Description

ActiveAssembly [Read-only] This property returns an Assembly object representing the
template currently being assembled.

HotDocs API

100

Assemblies [Read-only] This property returns an AssemblyCollection object, which is the
collection of Assembly objects in the HotDocs assembly queue. By querying
the Assemblies property, you can get all of the Assembly objects that are
queued for assembly.

AssemblyQueueVisible [Read/Write] This Boolean property controls the visibility status of the
HotDocs assembly queue. For example, if the AssemblyQueueVisible property
is False, the assembly queue is not visible.

CanAssembleAll [Read-only] This property indicates whether or not the version of HotDocs in
use is capable of assembling unregistered templates. Specifically, this
property returns true if the version of HotDocs is anything other than Player.

CanEditTemplates [Read-only] This property indicates whether or not the version of HotDocs in
use is capable of editing templates. Specifically, this property returns true if
the version of HotDocs is Developer or Developer LE.

CommandLine [Write-only] This property sets the HotDocs command line options as if it
were started with a particular command line. Setting this property to a string
is the same as if the string were passed to the executable when the program
was started. For example, if the command line invokes an assembly, a new
Assembly object is added to the queue. If the command line changes the
appearance or behavior of HotDocs, the change happens immediately.

CurrentLibraryPath [Read-only] This property returns the file system path and file name of the
current (open) HotDocs library as a String value

Flavor [Read-only] This property returns a value corresponding to which HotDocs
edition (Player, User, Developer, or Developer LE) is being used.

Hwnd [Read-only] This property returns the window handle of the HotDocs library
window.

Plugins [Read-only] This property returns a PluginsClass object, which represents a
collection of plug-ins currently registered with HotDocs.

Version
[Read-only] This property returns the HotDocs product version number as a
String value. For example, if you have HotDocs 11 installed, this property
returns 11.

Visible [Read/Write] This Boolean property controls the visibility status of the
HotDocs library window. For example, if the Visible property is False, the
library window is not visible.

Events

Event Description

AssemblyCompleteEvent

This event is fired when assembly completes.

OnAssemblyCompleteEvent
This event has been deprecated for HotDocs Desktop 11.

COM API

101

AssemblyCompleteEvent is recommended for use instead.

This event is fired when an assembly is completed. It returns the
name and path of the template that was used to assemble the
document, the path to the assembled document, a pointer to the
AnswerCollection object used in the assembly, and the assembly
handle which was given when the assembly was added to the queue.

OnAssemblyStartEvent This event is fired when an assembly starts. It returns a reference to
the Assembly object that represents the assembly session.

OnErrorEvent This event is fired when an error occurs. By returning true for the
override parameter, the integration can tell HotDocs not to display
any user interface indicating that an error occurred, which allows the
integration to either display its own error message or silently handle
the error.

OnLibraryInterfaceCloseEvent This event is fired when the user closes the HotDocs library user
interface.

OnLibraryOpenEvent

This event is fired when a library is opened.

OnTemplateSelectedEvent This event is fired when the user selects a template in the library to
assemble, or selects a template at the SelectTemplate or
SelectMultipleTemplate dialogs. By returning *override == true, the
integration can cancel the selection of the template.

OnUserInterfaceEvent This event is fired when the user selects items in the library user
interface.

OnUserMenuItemClickedEvent This event is fired when the user selects an integration-defined menu
item.

Application.AddUserMenuItem Method

This method allows you to add custom menu items to the HotDocs library menus. For example, you can
add an item to the HotDocs Help menu to display your own "About" dialog box. When a user selects the
item from the menu, the OnUserMenuItemClickedEvent event is fired to notify your application that the
menu item was chosen.

The AddUserMenuItem2 method is very similar and performs the same basic task as this method. However,
the AddUserMenuItem2 method gives you more control over the custom menu item. For example, you can
specify the position of the item in the menu and the icon that appears next to the item.

Syntax

HotDocs API

102

int AddUserMenuItem (string menuTxt, HotDocs.HDLIMENU menu)

Parameters Description

menuTxt The text to be inserted into the menu. To insert a separator bar in the menu,
use a single hyphen (-).

menu The name of the HotDocs menu to which the menu item will be added. This
must be a member of the HDLIMENU enumeration.

Return Value

A menu handle used to track when a user clicks the custom menu item.

This method only manipulates the menus in the HotDocs library window. To add items to the
menus in the assembly window, see the Assembly.AddUserMenuItem method. You can also
create HotDocs plug-ins that further customize menus in the library window.

Example

The following Visual C# example adds a separator bar followed by a menu entry to the File menu in the
HotDocs library window:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 long handle;

 app.AddUserMenuItem("-", HotDocs.HDLIMENU.LI_FILE);
 handle = app.AddUserMenuItem("User Menu Entry #1",
HotDocs.HDLIMENU.LI_FILE);
 }
}

Application.AddUserMenuItem2 Method

This method allows you to add custom menu items to the HotDocs library menus. For example, you can
add an item to the HotDocs Help menu to display your own "About" dialog box. When a user selects the
item from the menu, the OnUserMenuItemClickedEvent event is fired to notify your application that the
menu item was chosen.

COM API

103

The AddUserMenuItem method is very similar and performs the same basic task as this method. However,
the AddUserMenuItem method does not allow you to specify the position of the item in the menu or the
icon that appears next to the item.

This method was introduced with the release of HotDocs 2005.

Syntax

int AddUserMenuItem2 (string menuTxt, HotDocs.HDLIMENU menu, int position, Icon Icon
)

Parameters Description

menuTxt The text to be inserted into the menu. To insert a separator bar in the menu,
use a single hyphen (-).

menu The name of the HotDocs menu to which the menu item will be added. This
must be a member of the HDLIMENU enumeration.

position
This is the position in the menu where the custom menu item will be added.

Icon
This is the icon that appears next to the item in the menu.

Return Value

A menu handle used to track when a user clicks the custom menu item.

This method only manipulates the menus in the HotDocs library window. To add items to the
menus in the assembly window, see the Assembly.AddUserMenuItem method. You can also
create HotDocs plug-ins that further customize menus in the library window.

Example

The following Visual C# example adds a menu item to the File menu in the HotDocs library window with
your chosen icon. This example can only be used in conjunction with a Plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 //Important: HotDocs.Icon can only be used in conjunction with a
Plugin.
 HotDocs.Icon icon = new HotDocs.Icon();
 icon.LoadIcon(@"C:\images\UserMenuIcon.ico");

HotDocs API

104

 app.AddUserMenuItem2("User Menu Entry #1", HDLIMENU.LI_FILE, 5,
icon);

 Marshal.ReleaseComObject(icon);
 Marshal.ReleaseComObject(app);
 }
}

Application.ConvertModelToTemplate Method

This method converts a HotDocs Model to a HotDocs template.

This method was introduced with the release of HotDocs 2008.

Syntax

string ConvertModelToTemplate(string modelDocumentPath, ref string TemplatePath,
bool hotdocsDisplaysMessages)

Parameters Description

modelDocumentPath The file name and path of the HotDocs Model to convert.

TemplatePath The file name and path of the template to create from the HotDocs Model.

hotdocsDisplaysMessages Indicates if Hotdocs will display messages during the conversion.

Example

The following Visual C# example converts a HotDocs Model to a template:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 string mdPath = @"c:\temp\modeldocument1.rtf";
 string tpPath = @"c:\temp\template1.rtf";
 app.ConvertModelToTemplate(mdPath, ref tpPath, true);
 }
}

COM API

105

Application.ConvertTemplateToModel Method

This method converts a HotDocs template to a HotDocs Model.

This method was introduced with the release of HotDocs 2008.

Syntax

string ConvertTemplateToModel(string TemplatePath, ref string modelDocumentPath,
bool hotdocsDisplaysMessages)

Parameters Description

TemplatePath The file name and path of the template to convert.

modelDocumentPath The file name and path of the HotDocs Model to create from the template.

hotdocsDisplaysMessages Indicates if HotDocs will display messages during the conversion.

Example

The following Visual C# example converts a HotDocs template to a HotDocs Model:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 string tpPath = @"c:\temp\template1.rtf";
 string mdPath = @"c:\temp\modeldocument1.rtf";
 app.ConvertTemplateToModel(tpPath, ref mdPath, true);
 }
}

Application.CreateTemplatePackage Method

This method creates a template package for use with HotDocs Cloud Services or the HotDocs Open SDK.
A template package is single compressed file containing a template and all its dependencies – component
files, template manifests, browser interview support files (JavaScript and Silverlight), additional inserted or
assembled templates, graphics, etc.. Template packages also contain a package manifest that describes
the contents and structure of the package itself.

Syntax

HotDocs API

106

void CreateTemplatePackage(string templatePath, string packagePath, HdServerFileType
fileTypes, out string manifest)

Parameters Description

templatePath The full path and file name of the template to be packaged.

packagePath The full path and file name where the finished package should be created.

fileTypes The types of support files to generate and embed in the package. You must
specify either HDServerFilesJavaScript alone, or HDServerFilesJavaScript |
HDServerFilesSilverlight.

manifest When the method returns, this parameter will contain the package manifest
(XML) that was produced. This manifest was embedded in the package itself,
but its contents are returned here for convenience.

Example

The following C# example creates a template package suitable for serving both JavaScript and Silverlight
browser interviews:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 HotDocs.HDServerFileType fileTypes =
HotDocs.HDServerFileType.HDServerFilesJavaScript |
HotDocs.HDServerFileType.HDServerFilesSilverlight;
 string templatePath = @"C:\temp\Demo Editor List.docx";
 string packagePath = @"C:\temp\Demo Editor List.pkg";
 string manifest;

 app.CreateTemplatePackage(templatePath, packagePath, fileTypes, out
manifest);
 }
}

Application.DeleteUserMenuItem Method

This method allows you to remove custom items that were added to the HotDocs library window menus
using AddUserMenuItem or AddUserMenuItem2. It uses the handle returned when the menu item was
added to determine which menu item to remove.

Syntax

COM API

107

void DeleteUserMenuItem (int uiHandle)

Parameters Description

uiHandle This is the handle of the menu item that was returned when the item was
created using AddUserMenuItem.

Example

The following Visual C# example adds a separator bar followed by a menu entry to the File menu in the
HotDocs Library interface. Later (usually somewhere else in your code), the item is removed, which leaves
the separator bar as the last item in the menu and HotDocs deletes it automatically.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 int handle;

 app.AddUserMenuItem("-", HotDocs.HDLIMENU.LI_FILE);
 handle = app.AddUserMenuItem("User Menu Entry #1",
HotDocs.HDLIMENU.LI_FILE);

 // Somewhere else in the program...
 app.DeleteUserMenuItem(handle);
 }
}

Separator bars added using the AddUserMenuItem or AddUserMenuItem2 method do not have
valid handles, which means they cannot be removed using this method. However, if other items
are removed and a separator bar becomes the last entry in a menu, it is removed automatically.

Application.getDefaultPath Method

This method returns the default path HotDocs uses for the specified file type. You can use this method to
determine the default path for any type of file in the HDDirectory enumeration.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

string GetDefaultPath (HotDocs.HDDirectory directory, bool bRecent)

HotDocs API

108

Parameters Description

directory This is a value corresponding to the default folder for the desired file type.

bRecent This indicates whether you want to use the default path (false) or the most
recently used path (true) for the type of file indicated in the first parameter.

Return Value

The default path HotDocs uses for the specified file type.

Example

The following Visual C# example loops through each item in the HDDirectory enumeration and displays a
message box with the default and most recently used paths for that file type:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 string msg;

 foreach (HotDocs.HDDirectory item in
Enum.GetValues(typeof(HotDocs.HDDirectory)))
 {
 msg = item.ToString() + ":\r\n";
 msg += app.GetDefaultPath(item, false) + "\r\n";
 msg += app.GetDefaultPath(item, true) + "\r\n";
 MessageBox.Show(msg);
 }
 }
}

Application.GetHotDocsSetting Method

This method returns a HotDocs setting from the system registry. HotDocs looks first in the
HKEY_CURRENT_USER registry hive, followed by the HKEY_LOCAL_MACHINE hive. If the setting is not
found in either hive, the defaultValue is returned.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

object GetHotDocsSetting (string sectionName, string valueName, object defaultValue
)

COM API

109

Parameters Description

sectionName This is the section (or subkey) of the HotDocs registry key to search. For
example, Locations would search the HKCU\HotDocs\HotDocs\Locations key.

valueName This is the name of the value to search. For example, Program Files is a string
value in the Locations key that refers to the main HotDocs program files
folder.

defaultValue This is the default value to return if HotDocs cannot find a value in the
registry.

Return Value

This is the value returned by the search.

Example (Visual C#)

The following Visual C# example displays a message box with the HotDocs program files location:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 object oValue;
 oValue = app.GetHotDocsSetting("Locations", "Program Files", "Error!
Program Files value not found.");
 MessageBox.Show(oValue.ToString());
 }
}

Application.OpenLibrary Method

This method opens a HotDocs library (.HDL) file. If another library is already open, OpenLibrary closes the
other library and opens the library specified in the libPath parameter.

Syntax

void OpenLibrary (string libPath, bool addToMRU)

Parameters Description

libPath The file system path to the library.

HotDocs API

110

addToMRU [optional] If this parameter has a value of True, the opened library is added to
the list or most recently used libraries. (The default value is True.)

Example

The following Visual C# example opens a HotDocs Library file without adding it to the most recently used
library list:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Visible = true;

 app.OpenLibrary(@"C:\Documents\HotDocs\Libraries\Probate.hdl",
false);
 }
}

Application.PrintDocument Method

This method prints the specified document.

For most file types, this method uses the ShellExecute command to print the specified document. Printing
is only successful with documents whose host application is registered to provide print functionality; word
processors are typically registered to handle printing their own document types.

Syntax

void PrintDocument (string docPath)

Parameters Description

docPath The file system path to the document to print.

Example

The following Visual C# example prints a document located in the Documents folder:

public class ExampleCode
{
 static void Main()
 {

COM API

111

 HotDocs.Application app = new HotDocs.Application();

 app.PrintDocument(@"C:\Documents\HotDocs\Templates\Test.rtf");
 }
}

Application.PublishOnlineFiles Method

This method publishes a template for use with HotDocs Server. Like the Publishing Wizard (available in
the HotDocs Tools menu), this method scans the template for any inserted templates and builds the
JavaScript (.JS) and HotDocs Variable Collection (.HVC) files required for HotDocs Server. These .JS and
.HVC files are then copied to an output folder along with the template files.

This method was introduced in HotDocs 6.1 SP1. Also, it can only be used with HotDocs
Developer. If used with HotDocs Developer LE, User, or Player, it returns an error.

Syntax

void PublishOnlineFiles (string TemplatePath, string destinationDir)

Parameters Description

templatePath The file system path of the template to publish.

destinationDir The output folder to which resulting files are copied.

Example

The following Visual C# example creates the set of files required to assemble a template using HotDocs
Server and copies them to the specified folder.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

app.PublishOnlineFiles(@"C:\Documents\HotDocs\Templates\demoempl.rtf",
@"C:\HotDocs Server");
 }
}

HotDocs API

112

Application.PublishOnlineFiles2 Method

For HotDocs Desktop 11, this method is deprecated and throws an exception. For HotDocs
Desktop 11 use CreateTemplatePackage instead.

Use this method to publish a template for use with HotDocs Server. Like the Publishing Wizard (available
in the HotDocs Tools menu), this method scans the template for any inserted templates and builds the
JavaScript (.JS), HotDocs Variable Collection (.HVC) and Silverlight (.dll) files required for HotDocs Server.
This method adds these files and a copy of the template files to the output folder.

Syntax

void PublishOnlineFiles2(string templatePath, string destinationDir, HDServerFileType
fileTypes)

Parameters Description

templatePath The file system path of the template to publish.

destinationDir The output folder to which resulting files are copied.

fileTypes The types of support files to generate.

Example

The following C# example will publish suitable files for serving both JavaScript and Silverlight browser
interviews:

public class ExampleCode
{
 static void Main()
 {
 HotDocs._Application7 app = new HotDocs.Application();

 HotDocs.HDServerFileType fileTypes =
HotDocs.HDServerFileType.HDServerFilesJavaScript |
HotDocs.HDServerFileType.HDServerFilesSilverlight;
 string templatePath = @"C:\temp\Demo Editor List.rtf";
 string destinationDir = @"C:\temp\publish";

 app.PublishOnlineFiles2(templatePath, destinationDir, fileTypes);
 }
}

COM API

113

Application.ResolveReferencePath Method

This method converts a reference path to a full file system path. For example, if you use SelectTemplate2
to get the path of a selected template that includes a reference path (e.g., ^PUBTest\template.rtf), this
method can look up the reference path keyword and return a full path (e.g.,
C:\HotDocs\Templates\template.rtf).

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

string ResolveReferencePath (string referencePath)

Parameters Description

referencePath A file path containing a reference path keyword (e.g., ^PUBTest\template.rtf).

Return Value

A full file path for the referenced template.

Example

The following Visual C# example allows the user to select a template and then it displays the unresolved
and resolved reference paths.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 string tplPath, tplTitle, tplDesc;

 app.SelectTemplate2(@"C:\Documents\HotDocs\Libraries\MyLibrary.hdl",
true, false, out tplPath, out tplTitle, out tplDesc);

 MessageBox.Show(tplPath); //Unresolved path
 tplPath = app.ResolveReferencePath(tplPath);
 MessageBox.Show(tplPath); //Resolved path
 }
}

Application.RetrieveUrlFile Method

HotDocs API

114

This method retrieves a file from the specified URL.

This method was introduced with the release of HotDocs 2005.

Syntax

void RetrieveUrlFile (string url, ref string FileName)

Parameters Description

url The URL of the file to retrieve.

FileName The file name of the file to retrieve.

If the file is not already in the Internet Explorer cache, HotDocs will save the
downloaded file in the location specified in this parameter. If the file is in the
cache, however, the value returned in this parameter will be the location of
the file in the cache.

Example

The following Visual C# example downloads a file from a Web site and saves it on the local hard drive:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 string url = "http://www.hotdocs.com/sites/default/files/logo_4.png";
 string FileNameDestination = @"C:\temp\image.jpg";
 string FileName = FileNameDestination;

 app.RetrieveUrlFile(url, ref FileName);

 // If the file was already in the Internet Explorer cache, FileName
will not be the same value as it was originally.
 // In that case, copy the file from the cache to the desired
location.
 if (FileName != FileNameDestination)
 System.IO.File.Copy(FileName, FileNameDestination, true);
 }
}

Application.SaveDocAsPDF Method

COM API

115

This method converts a document file to a PDF file using HotDocs PDF Advantage. The conversion is done
automatically, so no user intervention is necessary, although some user interface may be displayed.

This method was introduced with the release of HotDocs 6.1 SP1.

If HotDocs PDF Advantage is not installed, this method will return an error.

Syntax

void SaveDocAsPDF (string docFileName, string destinationFileName)

Parameters Description

docFileName The file system path for the document file to convert. This file must be one of
the supported HotDocs document types (RTF, DOCX, WPD, HPD, HFD, PDF,
EVY).

destinationFileName The file system path for the PDF file that will be created.

Example

The following Visual C# example converts an RTF document to a PDF file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 app.SaveDocAsPDF(@"C:\Documents\HotDocs\Templates\Testdoc.rtf",
@"C:\Documents\HotDocs\Templates\Testdoc.pdf");
 }
}

Application.SelectMultipleTemplates Method

This method opens the specified library in a modal dialog box, allowing users to select multiple templates
by pressing Shift or Ctrl as they click templates. The selected templates are then passed back to the
integrating program in a SAFEARRAY structure.

Syntax

void SelectMultipleTemplates (string libPath, bool bOpen, out int tplCount, out
object tplPaths, out object tplTitles, out object tplDescs)

HotDocs API

116

Parameters Description

libPath The file system path to the library the integration must open. This path must
point to an .HDL file. If this path is an empty string (""), then HotDocs will
attempt to display the last library the user viewed.

bOpen If bOpen == true, then the modal dialog will include an Open button,
allowing the user to open a different library file. If bOpen == false, then the
modal dialog will not include an Open button and the user will not be able to
open a different library file.

tplCount The number of templates the user selected.

tplPaths It contains an array of (count) that hold the file system paths (including the
file name) of the selected templates.

tplTitles [optional in languages supported] It contains an array of (count) that hold the
titles of the selected templates. If there is no title for a selected template, that
portion of the array will hold an empty string ("").

tplDescs [optional in languages supported] Contains an array of (count) that hold the
descriptions of the selected templates. If there is no description for a selected
template, that portion of the array will hold an empty string (""). As a note,
template descriptions can be quite long, so if you use this parameter, this
method could use a lot of memory.

Example (Visual C#)

The following Visual C# example displays a dialog box where users can select multiple templates from the
initial library or open a different library. It then displays information about the templates selected:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 string libPath = @"C:\Documents\HotDocs\Libraries\DOCX Tutorial
Templates.hdl";
 int tplCount;
 dynamic tplPaths;
 dynamic tplTitles;
 dynamic tplDescs;

 app.SelectMultipleTemplates(libPath, true, out tplCount, out
tplPaths, out tplTitles, out tplDescs);

 MessageBox.Show("You selected " + tplCount + " templates.");

 if (tplCount > 0)
 {
 for (int i = 0; i < tplCount; i++)
 {

COM API

117

 MessageBox.Show(tplPaths[i] + "\r\n" + tplTitles[i] + "\r\n"
+ tplDescs[i]);
 }
 }

 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }
}

Application.SelectMultipleTemplates2 Method

This method opens the specified library in a modal dialog box, allowing users to select multiple templates
by pressing Shift or Ctrl as they click templates. The selected templates are then passed back to the
integrating program in a SAFEARRAY structure.

The difference between this method and SelectMultipleTemplates is the bResolveReferencePaths
parameter. When this parameter is FALSE, template paths containing reference keywords are returned as
reference paths (e.g., ^PUBpath\templatename.rtf) instead of being resolved to full paths (e.g.,
C:\Templates\templatename.rtf). You can then use the ResolveReferencePath method to translate the
reference path into a full path as needed.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void SelectMultipleTemplates2 (string libPath, bool bOpen, bool
bResolveReferencePaths, out int tplCount, out object tplPaths, out object tplTitles,
out object tplDescs)

Parameters Description

libPath The file system path to the library the integration must open. This path must
point to an .HDL file. If this path is an empty string (""), then HotDocs will
attempt to display the last library the user viewed.

bOpen If bOpen == true, then the modal dialog will include an Open button,
allowing the user to open a different library file. If bOpen == false, then the
modal dialog will not include an Open button and the user will not be able to
open a different library file.

bResolveReferencePaths Indicates if reference paths will be resolved into full file paths (TRUE) or left as
reference paths (FALSE).

tplCount The number of templates the user selected.

tplPaths It contains an array of (count) that hold the file system paths (including the
file name) of the selected templates.

HotDocs API

118

tplTitles [optional] It contains an array of (count) that hold the titles of the selected
templates. If there is no title for a selected template, that portion of the array
will hold an empty string ("").

tplDescs [optional] Contains an array of (count) that hold the descriptions of the
selected templates. If there is no description for a selected template, that
portion of the array will hold an empty string (""). As a note, template
descriptions can be quite long, so if you use this parameter, this method
could use a lot of memory.

Example (Visual C#)

The following Visual C# example displays a dialog box where users can select multiple templates from the
initial library or open a different library. It then displays information about the templates selected:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 string libPath = @"C:\Documents\HotDocs\Libraries\DOCX Tutorial
Templates.hdl";
 int tplCount;
 dynamic tplPaths;
 dynamic tplTitles;
 dynamic tplDescs;

 app.SelectMultipleTemplates2(libPath, true, false, out tplCount, out
tplPaths, out tplTitles, out tplDescs);

 MessageBox.Show("You selected " + tplCount + " templates.");

 if (tplCount > 0)
 {
 for (int i = 0; i < tplCount; i++)
 {
 MessageBox.Show(tplPaths[i] + "\r\n" + tplTitles[i] + "\r\n"
+ tplDescs[i]);
 }
 }

 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }
}

Application.SelectTemplate Method

COM API

119

This method opens a modal dialog that displays the specified library, allowing the user to select a
template. The path, title, and description of the selected template are then passed back to the integrating
program.

Syntax

void SelectTemplate (string libPath, bool bOpen, out string tplPath, out string
tplTitle, out string tplDesc)

Parameters Description

libPath The file system path to the library the integration must open. This path must
point to an .HDL file. If this path is an empty string (""), then HotDocs will
attempt to display the last library the user viewed.

bOpen If bOpen == true, then the modal dialog will include an 'Open' button,
allowing the user to open a different library. If bOpen == false, then the
modal dialog will not contain an Open button, and the user cannot open a
different library.

tplPath Contains the file system path (including file name) of the selected template. If
no template was chosen, this is an empty string ("").

tplTitle [optional] Contains the template title of the selected template.

tplDesc [optional] Contains the template description of the selected template. As a
note, template descriptions can be quite long, so if you use this parameter,
this method could use a lot of memory.

Example

The following Visual C# example displays a dialog box where users can select a template. It then displays
information about the template selected:

public class ExampleCode
{
 static void Main()
 {
 string sTitle, sDescription, sPath;
 string sLibrary = @"C:\Documents\HotDocs\Libraries\DOCX Tutorial
Templates.hdl";
 HotDocs.Application app = new HotDocs.Application();

 app.SelectTemplate(sLibrary, true, out sPath, out sTitle, out
sDescription);

Console.WriteLine("Title:\t{0}\nDescription:\t{1}\nPath:\t{2}",sTitle,sDescri
ption,sPath);
 }
}

HotDocs API

120

Application.SelectTemplate2 Method

This method opens the specified library in a modal dialog box, allowing users to select a single template.
The path, title, and description of the selected template are then passed back to the integrating program.

The difference between this method and SelectTemplate is the bResolveReferencePaths parameter. When
this parameter is FALSE, a template path containing a reference keyword is returned as a reference path
(e.g., ^PUBpath\templatename.rtf) instead of being resolved to a full path (e.g.,
C:\Templates\templatename.rtf). You can then use the ResolveReferencePath method to translate the
reference path into a full path as needed.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void SelectTemplate2 (string libPath, bool bOpen, bool bResolveReferencePaths, out
string tplPath, out string tplTitle, out string tplDesc)

Parameters Description

libPath The file system path to the library the integration must open. This path must
point to an .HDL file. If this path is an empty string (""), then HotDocs will
attempt to display the last library the user viewed.

bOpen If bOpen == true, then the modal dialog will include an 'Open' button,
allowing the user to open a different library. If bOpen == false, then the
modal dialog will not contain an Open button, and the user cannot open a
different library.

bResolveReferencePaths Indicates if a reference path will be resolved into a full file path (TRUE) or left
as a reference path (FALSE).

tplPath Contains the file system path (including file name) of the selected template. If
no template was chosen, this is an empty string ("").

tplTitle [optional] Contains the template title of the selected template.

tplDesc [optional] Contains the template description of the selected template. As a
note, template descriptions can be quite long, so if you use this parameter,
this method could use a lot of memory.

Example

The following Visual C# example displays a dialog box where users can select a template. It then displays
information about the template selected which resolves to a full path.

COM API

121

public class ExampleCode
{
 static void Main()
 {
 string sTitle, sDescription, sPath;
 string sLibrary = @"C:\Documents\HotDocs\Libraries\DOCX Tutorial
Templates.hdl";
 HotDocs.Application app = new HotDocs.Application();

 app.SelectTemplate2(sLibrary, true, true, out sPath, out sTitle, out
sDescription);

Console.WriteLine("Title:\t{0}\nDescription:\t{1}\nPath:\t{2}",sTitle,sDescri
ption,sPath);
 }
}

Application.SendToWordProcessor Method

This method sends a document specified in the docFileName parameter to the word processor.

Syntax

void SendToWordProcessor (string docFileName)

Parameters Description

docFileName The file system path to the document to open. The file format must be one
that is supported by HotDocs, for example: Word (.DOCX and .RTF),
WordPerfect (.WPD), or HotDocs Filler (.HFD, .HPD).

Example

The following Visual C# example sends a document located in the Documents folder to the word
processor:

public class ExampleCode
{
 static void Main()
 {
 string sDocument = @"C:\Documents\HotDocs\Templates\Test.docx";
 HotDocs.Application app = new HotDocs.Application();

 app.SendToWordProcessor(sDocument);
 }

HotDocs API

122

}

Application.SetUserInterfaceItem Method

This method sets the state for various features (elements) of the HotDocs library window. For example,
you can use this method to disable features your integration users should not have access to, or you can
enable features users may have disabled.

Syntax

void SetUserInterfaceItem (HotDocs.HDLUI element, bool enabled)

Parameters Description

element The user interface element to change. This must be an HDLUI enum member.

enabled Turns the feature on (TRUE) or off (FALSE).

Example

The following Visual C# example disables three features in the interface to prevent the user from
changing the currently open library:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 app.SetUserInterfaceItem(HotDocs.HDLUI.LUIFILENEWLIBRARY, false);
 app.SetUserInterfaceItem(HotDocs.HDLUI.LUIFILEOPENLIBRARY, false);
 app.SetUserInterfaceItem(HotDocs.HDLUI.LUIFILEMRULIST, false);
 app.Visible = true;
 }
}

Application.ActiveAssembly Property

[Read-only] This property returns an Assembly object representing the template currently being
assembled.

COM API

123

You should make sure there is an active assembly before using this property to find out
information about the assembly. In addition, you should use caution when manipulating the
Assembly object. The state of the object should not be changed during assembly.

Syntax

HotDocs.Assembly ActiveAssembly [get]

Example

The following Visual C# example displays a message box with the name of the template currently being
assembled or a message indicating that there is no active assembly:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.AssemblyCollectionClass asc;
 bool bActive;
 asc = app.Assemblies;

 // Find out if there is an active assembly
 bActive = false;
 if (asc.Count > 0)
 for (int i = 0; i < asc.Count; i++)
 if
(asc.Item(i).Status.Equals(HotDocs.HDASSEMBLYSTATUS.HDASMSTATUSASSEMBLING))
 bActive = true;

 // Show message box
 if (bActive)
 MessageBox.Show (app.ActiveAssembly.TemplateTitle);
 else
 MessageBox.Show("There is no active assembly.");
 }
}

Application.Assemblies Property

[Read-only] This property returns an AssemblyCollection object, which is the collection of Assembly objects
in the HotDocs assembly queue. By querying the Assemblies property, you can get all of the Assembly
objects that are queued for assembly.

Syntax

HotDocs API

124

HotDocs.AssemblyCollectionClass Assemblies [get]

Example

The following Visual C# example displays the number of items in the assembly queue. It also lists the title
of each assembly (if the queue is not empty):

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 Console.WriteLine("The assembly queue contains {0}
template(s).",app.Assemblies.Count);
 for (int i = 0; i < app.Assemblies.Count; i++)
 Console.WriteLine("\t" + app.Assemblies.Item(i).TemplateTitle);
 }
}

Application.AssemblyQueueVisible Property

[Read/Write] This Boolean property controls the visibility status of the HotDocs assembly queue. For
example, if the AssemblyQueueVisible property is False, the assembly queue is not visible.

Syntax

bool AssemblyQueueVisible [set, get]

Example

The following Visual C# example makes the assembly queue invisible if it is currently visible. Otherwise, it
makes the assembly queue visible if it is currently invisible:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 app.AssemblyQueueVisible = !(app.AssemblyQueueVisible);
 }
}

COM API

125

Application.CanAssembleAll Property

 [Read-only] This property indicates whether or not the version of HotDocs in use is capable of
assembling unregistered templates. Specifically, this property returns true if the version of HotDocs is
anything other than Player.

This property was introduced with the release of HotDocs 10.

Syntax

bool CanAssembleAll [get]

Application.CanEditTemplates Property

[Read-only] This property indicates whether or not the version of HotDocs in use is capable of editing
templates. Specifically, this property returns true if the version of HotDocs is Developer or Developer LE.

This property was introduced with the release of HotDocs 10.

Syntax

bool CanEditTemplates [get]

Application.CommandLine Property

[Write-only] This property sets the HotDocs command line options as if it were started with a particular
command line. Setting this property to a string is the same as if the string were passed to the executable
when the program was started. For example, if the command line invokes an assembly, a new Assembly
object is added to the queue. If the command line changes the appearance or behavior of HotDocs, the
change happens immediately.

Syntax

string CommandLine [set]

Example

HotDocs API

126

The following Visual C# example sets the CommandLine property to cause a new assembly to begin using
the specified template file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 app.CommandLine =
@"/tf=C:\Documents\HotDocs\Templates\demoempl.docx";
 }
}

Application.CurrentLibraryPath Property

[Read-only] This property returns the file system path and file name of the current (open) HotDocs library
as a String value.

Syntax

string CurrentLibraryPath [get]

Example

The following Visual C# example displays a message box containing the file name and path of the current
HotDocs library.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Visible = true;
 MessageBox.Show("Current Library File and Path: " +
app.CurrentLibraryPath);
 }
}

Application.Flavor Property

COM API

127

[Read-only] This property returns a value corresponding to which HotDocs edition (Player, User,
Developer, or Developer LE) is being used.

This property returns one of the following values from the HDPRODUCTFLAVOR enumeration:

Name Value Description

PLAYER 1 HotDocs Player

STANDARD 2 HotDocs Developer LE

PROFESSIONAL 3 HotDocs Developer

USER 4 HotDocs User

Syntax

HotDocs.HDPRODUCTFLAVOR Flavor [get]

Example

The following Visual C# example displays the HotDocs flavor in a message box:

program class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 switch (app.Flavor)
 {
 case HotDocs.HDPRODUCTFLAVOR.PLAYER:
 MessageBox.Show("HotDocs Player");
 break;
 case HotDocs.HDPRODUCTFLAVOR.STANDARD:
 MessageBox.Show("HotDocs Developer LE");
 break;
 case HotDocs.HDPRODUCTFLAVOR.PROFESSIONAL:
 MessageBox.Show("HotDocs Developer");
 break;
 case HotDocs.HDPRODUCTFLAVOR.USER:
 MessageBox.Show("HotDocs User");
 break;
 }
 }
}

Application.Hwnd Property

HotDocs API

128

[Read-only] This property returns the window handle of the HotDocs library window.

Syntax

int Hwnd [get]

Example

The following Visual C# example displays the HotDocs library window handle:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 App.Visible = true;
 MessageBox.Show(app.Hwnd.ToString());
 }
}

Application.Plugins Property

[Read-only] This property returns a PluginsClass object, which represents a collection of plug-ins currently
registered with HotDocs.

This property was introduced with the release of HotDocs 2005 SP2.

Syntax

HotDocs.PluginsClass Plugins [get]

Application.Version Property

[Read-only] This property returns the HotDocs product version number as a String value. For example, if
you have HotDocs 11 installed, this property returns 11.

Syntax

string Version [get]

COM API

129

Example

The following Visual C# example displays the HotDocs version number in a message box:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 MessageBox.Show(app.Version);
 }
}

Application.Visible Property

[Read/Write] This Boolean property controls the visibility status of the HotDocs library window. For
example, if the Visible property is False, the library window is not visible.

Syntax

bool Visible [get, set]

Example

The following Visual C# example makes the library window invisible if it is currently visible. Otherwise, it
makes the library window visible if it is currently invisible.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 if (app.Visible)
 app.Visible = false;
 else
 app.Visible = true;
 }
}

Application.AssemblyCompleteEvent Event

HotDocs API

130

This event is fired when assembly completes.

AssemblyCompleteEvent is a replacement event method for OnAssemblyCompleteEvent. It is
intended to eliminate the need to pass the AnswerCollection by pointer and instead wrap it in a
object. This should help Visual Basic programmers deal with the VARIANT event. This event
should be fired at the same time as OnAssemblyCompleteEvent.

Syntax

void AssemblyCompleteEvent(string tplTitle, string tplPath, string docPath, object
ansColl, int assemblyHandle)

Application.OnAssemblyCompleteEvent Event

This event has been deprecated for HotDocs Desktop 11. AssemblyCompleteEvent is
recommended for use instead.

This event is fired when an assembly is completed. It returns the name and path of the template that was
used to assemble the document, the path to the assembled document, a pointer to the AnswerCollection
object used in the assembly, and the assembly handle which was given when the assembly was added to
the queue.

Syntax

void OnAssemblyCompleteEvent (string tplTitle, string tplPath, string docPath,
HotDocs._AnswerCollection ansColl, int AssemblyHandle)

Parameters Description

tplTitle The title of the template used during the assembly.

tplPath The file system path (including file name) of the template.

docPath The file system path to the assembled document. If the user chooses not to
save the document, this will be an empty string ("").

ansColl A pointer to the AnswerCollection object used during the assembly.

assemblyHandle The assemblyhandle returned when the Assembly object was added to the
queue.

COM API

131

Application.OnAssemblyStartEvent Event

This event is fired when an assembly starts. It returns a reference to the Assembly object that represents
the assembly session.

Syntax

void OnAssemblyStartEvent (HotDocs.Assembly assemblyObject)

Parameters Description

assemblyObject The Assembly object that represents the assembly session.

Application.OnErrorEvent Event

This event is fired when an error occurs. By returning true for the override parameter, the integration can
tell HotDocs not to display any user interface indicating that an error occurred, which allows the
integration to either display its own error message or silently handle the error.

Syntax

void OnErrorEvent (int errCode, string errMesg, out bool override)

Parameters Description

errcode Numerical error code.

errmesg Text description of error.

override Return parameter:

• *override == true means HotDocs will not display any user interface
indicating that an error occurred.

• *override == false means that HotDocs will display the normal error
notification.

Application.OnLibraryInterfaceCloseEvent Event

This event is fired when the user closes the HotDocs library user interface.

HotDocs API

132

Syntax

void OnLibraryInterfaceCloseEvent ()

Application.OnLibraryOpenEvent Event

This event is fired when a HotDocs library is opened.

Syntax

void OnLibraryOpenEvent ()

Application.OnTemplateSelectedEvent Event

This event is fired when the user selects a template in the library to assemble, or selects a template at the
SelectTemplate or SelectMultipleTemplate dialogs. By returning *override == true, the integration can
cancel the selection of the template.

Syntax

void OnTemplateSelectedEvent (string tplTitle, string tplPath, out bool override)

Parameters Description

tpltitle The title of the template. If the template does not have a title, this will be an
empty string ("").

tplpath The file system path (including the file name) of the selected template.

override Return parameter:

• *override == true will cancel the selection of the template.
• *override == false will allow the selection to continue normally.

Application.OnUserInterfaceEvent Event

COM API

133

This event is fired when the user selects items in the library user interface.

Syntax

void OnUserInterfaceEvent (HotDocs.HDLUI hdEvent, out bool override)

Parameters Description

hdevent The user interface item selected. It is one of the values from the HDLUI
enumeration.

override Return parameter:

• *override == true will cancel the user interface action.
• *override == false will allow the action to continue normally.

Application.OnUserMenuItemClickedEvent Event

This event is fired when the user selects an integration-defined menu item.

Syntax

void OnUserMenuItemClickedEvent (int menuHandle)

Parameters Description

menuHandle The handle for the user-defined menu. This is the handle returned from the
Application.AddUserMenuItem method.

HotDocs.Assembly Object

HotDocs.Assembly Object

The Assembly object represents a HotDocs assembly. All HotDocs assemblies are represented by an
Assembly object internally (with the exception of test assemblies). The Assembly object contains
information about the inputs and outputs of the assembly, state information about how the assembly is
performed, and features to customize and control the Assembly interface.

HotDocs API

134

All assemblies are stored in a queue called the AssemblyCollection. The AssemblyCollectionis exposed
through the API with the HotDocs.Application.Assemblies property. The queue is ordered so the items at
the top of the collection will be processed before the assemblies at the bottom of the queue (such is the
nature of queues).

When HotDocs begins an assembly, it doesn't remove the Assembly object from the queue. The object is
still accessible from the HotDocs.Application.Assemblies property or through the
HotDocs.Application.ActiveAssembly property. Be careful about accessing the currently assembling object
however. By changing the state of the currently assembling Assembly object, you can put HotDocs into a
bad state.

General Information

ProgID: HotDocs.Assembly.11.0
HotDocs.Assembly (version-independent)

CLSID: {503AB2B4-5D01-4EF0-9B2B-36E1B9C738A9}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_Assembly.

Name IID Added in

_Assembly {A99AB319-0378-4033-9534-
DF296B6B63C6}

Added in HotDocs 6.0

_Assembly2 {A99AB320-0378-4033-9534-
DF296B6B63C6}

Added in HotDocs 6.1 SP1

_Assembly3 {A99AB321-0378-4033-9534-
DF296B6B63C6}

Added in HotDocs 2005 SP2

_AssemblyEvents {58172076-C690-434D-942B-
F3EA55693C98}

Added in HotDocs 6.0

The _AssemblyEvents interface designates an event sink interface that an application must
implement in order to receive event notifications from a HotDocs.Assembly object.

Methods

Method Description

AddUserMenuItem

This method adds a custom menu item to the HotDocs assembly window
menus.

DeleteUserMenuItem

 This method removes a custom menu item from the HotDocs assembly
window menu that was created using the AddUserMenuItem method.

COM API

135

GetSaveAsExtDlg

This method prompts the user for a file type to use when saving a
document in a document manager.

LocalBrowseDlg

This method displays a dialog box for the user to select a file.

OpenAnswerFileDlg

This method displays the Open Answer File dialog box.

SelectOpenAnswerFileDlg

This method displays the Open Answer File dialog box and returns the
file name and path of the selected answer file.

SendToWordProcessor

This method sends the resulting assembled document to the word
processor.

SetUserInterfaceItem

This method sets the state for the element user interface element. This
method is useful to turn off features the users of your integration should
not have access to and enable features users may have disabled.

UseAnswerFile

This method creates an AnswerCollection object, loads the answers from
the answerFilePath answer file into it, and sets the
Assembly.AnswerCollection property to the object. This is just a shortcut
method, as everything it does you could do manually by using other
methods and properties.

Properties

Property Description

AnswerCollection

[Read/Write] This property controls the AnswerCollection object used
during assembly. The value of this property is a reference to the
AnswerCollection object used by the Assembly object.

AnswerSummaryPath

[Read/Write] This property controls the location to which the answer
summary file is written. If this property is set when the assembly
starts, an Answer Summary will be written in the specified location
when the assembly is complete.

Application

[Read-only] This property returns a reference to the Application
object.

AssemblyHandle

[Read-only] This property reports the handle that can identify the
assembly. This value is the same as the assembly handle returned
when the Assembly was added to the assembly queue.

CommandLine

[Write-only] This property sets command line options for the
assembly as if it were started with a particular command line from the
library. Setting this property to a string is the same as if the string
were passed in from the library entry.

DocumentPath

[Read/Write] This property controls the location where the assembled
document file is written. It is the file path for the destination file.

Hwnd

[Read-only] This property returns the window handle for the HotDocs

HotDocs API

136

Assembly interface.

KeepInQueue

[Read/Write] This Boolean property controls the behavior of the
assembly queue. If it is TRUE when the assembly is complete, a
reference will remain in the Assembly Queue window. If it is FALSE, all
references to the assembly will be destroyed when the assembly is
complete.

Map

[Read/Write] This property controls which VarMap object is used
during assembly.

PrintWhenComplete

[Read/Write] This Boolean property controls whether the document is
automatically printed when the assembly completes. It controls the
same behavior as specifying a Print (/pr) option at the command line.

PromptToSaveDocument

[Read/Write] This is a Boolean property that controls whether
HotDocs will prompt to save a copy of the assembled document at
the end of the assembly. The initial value is the value stored in the
Document Assembly folder in HotDocs Options (Tools > Options >
Document Assembly > Prompt to save document when closing
assembly window). If the integrator changes the
PromptToSaveDocument property, HotDocs will disregard the setting
in HotDocs Options in favor of the value set in the integration.

QuestionSummaryPath

[Read/Write] This property controls the location to which the
question summary file is written. If this property is set when the
assembly starts, a question summary will be written out as an HTML
document when the assembly is complete.

ShowAnswerFileDialog

[Read/Write] This Boolean property controls whether or not the Save
Answers dialog box appears at the end of an assembly.

Status

[Read-only] This property tells what state the Assembly object is in.

SuppressUnansweredWarning

[Read/Write] This is a Boolean property that sets the Display
unanswered warning before saving documents option for the
given assembly. If this property is false, then HotDocs will display a
warning before the user saves the document or sends the document
to the word processor if there are variables which are used but not
answered. If this property is true, then all such warnings are
suppressed.

TemplateDesc

[Read/Write] This property contains the description for the template
that will be used to assemble a document. This property is for the
integration programmer's convenience. It is set but is not used by
HotDocs internally.

TemplatePath

[Read/Write] This property contains the file system path for the
template that will be used to assemble a document.

TemplateTitle

[Read/Write] This property contains the title for the template that will
be used to assemble a document.

COM API

137

Visible

[Read/Write] This Boolean property determines if the assembly
interface will be visible to the user. This property must be set before
assembly starts or it will have no effect. If Visible returns false, then it
has the same effect as specifying the No Assembly Window (/nw)
option on the command line.

Events

Event Description

OnAssemblyCompleteEvent

This event is fired when the assembly completes.

OnAssemblyStartEvent

This event is fired when the assembly starts.

OnCanOpenFile

This event is fired when a file can be opened.

OnCloseAssemblyInterfaceEvent

This event is fired when assembly interface actually closes.

OnErrorEvent

This event is fired when an error occurs. By returning true for the
override parameter, the integration can tell HotDocs not to display
any error messages, allowing the integration to either display its
own error message or deal with the error silently.

OnFileOpen

This event is fired when a file is opened.

OnFileSave

This event is fired when a file is saved.

OnFileSelectEvent

This event is fired when a file is selected.

OnGetAnswerFileDisplayName

This event is fired when HotDocs gets the name of an answer file to
display.

OnGetMRUInfo

This event is fired when HotDocs gets information from the most
recently used (MRU) list.

OnNeedAnswerEvent

This event is fired when an answer value is needed by the assembly,
but not found in the AnswerCollection answer set. It allows the
integration to provide answers as they are needed, rather than
trying to provide all the answers before the assembly starts.

OnPostCloseAnswerFile

This event is fired after the answer file is closed.

OnPostSaveDocumentEvent

This event is fired after a document is saved. The document can be
an assembled document, a question summary document, or an
answer summary document.

OnPreCloseAnswerFile

This event is fired when HotDocs prepares to close an answer file.

OnPreSaveDocumentEvent

This event is fired prior to saving the document. By setting *showui
= false, the integration can prevent the user interface relating to
saving the document from showing. By setting *override = true, the
integration can prevent the save from happening.

HotDocs API

138

OnUserInterfaceEvent

This event is fired when the user selects certain options at the
assembly interface. This can be useful if the integration wants to
override a particular HotDocs feature or command.

OnUserMenuItemClickedEvent

This event is fired when the user selects an integration-defined
menu item. (See Assembly.AddUserMenuItem method.)

PostSaveAnswersEvent

This event is fired after an answer file is saved.

PreSaveAnswersEvent

This event is fired after the user has indicated he or she wants to
save the answers, but before the actual save occurs. By setting
*override == true, the integration can prevent the save from
happening.

Assembly.AddUserMenuItem Method

This method adds a custom menu item to the HotDocs assembly window menus.

For example, you may want to display your own "About" dialog box from the HotDocs Help menu. You
can use the AddUserMenuItem method to do this. When a user selects the item, the
_AssemblyEvents.OnUserMenuItemClickedEvent event is fired to notify your application that your menu
item was chosen.

This method only manipulates the menus in the assembly interface. To add items to the library
interface, see Application.AddUserMenuItem or What is a HotDocs plug-in?.

Syntax

void AddUserMenuItem (string menuTxt, HotDocs.HDAIMENU menuItem, out int uiHandle)

Parameters Description

menuTxt The text to be inserted into the menu. (You can use a single hyphen (-) to
insert a separator bar into the menu.)

menuItem The name of the HotDocs menu to which the menu item will be added. This
must be a member of the HDAIMENU enumeration.

uiHandle This is the menu handle that the program can use to track when someone
clicks the menu entry.

Example

The following Visual C# example adds a separator and item to the Help menu:

COM API

139

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.Assembly asm = new HotDocs.Assembly();
 int h_sep, h_addh;
 asm.TemplatePath = @"C:\Documents\HotDocs\Templates\demoempl.docx";

 asm.AddUserMenuItem("-", HDAIMENU.AI_HELP, out h_sep);
 asm.AddUserMenuItem("Additional Help", HDAIMENU.AI_HELP, out h_addh);

 asm.Visible = true;
 app.Assemblies.Add(asm);
 }
}

Assembly.DeleteUserMenuItem Method

This method removes a custom menu item from the HotDocs assembly window menu that was created
using the AddUserMenuItem method.

You cannot delete separator bars. HotDocs manages separators internally. When you remove a
menu item, HotDocs verifies that the last item in the menu is not a separator. If it is, HotDocs
will automatically remove the bar from the menu.

Syntax

void DeleteUserMenuItem (int uiHandle)

Parameters Description

uiHandle This is the menu handle that was returned from AddUserMenuItem.

Example

The following Visual C# example adds a menu item to the Help Menu, then removes it before beginning
an assembly:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.Assembly asm = new HotDocs.Assembly();

HotDocs API

140

 int h_addh;

 asm.TemplatePath = @"C:\My
Documents\HotDocs\Templates\demoempl.docx";

 //adds a menu item to the help menu.
 asm.AddUserMenuItem("Additional Help", HDAIMENU.AI_HELP, out h_addh);

 //removes the menu item from the help menu.
 asm.DeleteUserMenuItem(h_addh);

 asm.Visible = true;
 app.Assemblies.Add(asm);

 }
}

Assembly.GetSaveAsExtDlg Method

This method prompts the user for a file type to use when saving a document in a document manager.

Syntax

string GetSaveAsExtDlg (string docExt)

Parameters Description

docExt This is the file name extension (.hpt, .hft, .rtf, .dot, .wpt) of the template being
assembled. Depending on what type of template is assembled, the options in
the Save As dialog box will change. It could also be an answer file type (.anx
or .ans).

Example

The following Visual C# example displays the Save in Document Manager dialog box:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs._Assembly3 asm = app.ActiveAssembly as HotDocs._Assembly3;

 string ext = ".rtf";
 string fileType;
 fileType = asm.GetSaveAsExtDlg(ext);
 }

COM API

141

}

Assembly.LocalBrowseDlg Method

This method displays a dialog box for the user to select a file.

Syntax

void LocalBrowseDlg (int parentWnd, bool bOpenFileDialog, string defaultExt, string
filter, string initialDirectory, ref string FileName)

Parameters FileName

parentWnd A handle to the the browse dialog's parent window.

bOpenFileDialog Indicates if the browse dialog will be an "open file" dialog (true) or "save file"
dialog (false).

defaultExt For a "save" dialog, this is the file name extension added to the end of the
specified file name if the user does not specify an extension.

filter This limits the types of files displayed in an "open file" dialog. For example,
.anx would show only files with the .anx file name extension.

initialDirectory This indicates the folder displayed when the dialog is first displayed.

FileName This returns the file name and path of the selected file.

Assembly.OpenAnswerFileDlg Method

This method displays the Open Answer File dialog box.

This method works only with a visible assembly.

Syntax

void OpenAnswerFileDlg ()

Example

The following Visual C# example displays the "Open Answer File" dialog box:

HotDocs API

142

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs._Assembly3 asm = app.ActiveAssembly as HotDocs._Assembly3;

 asm.OpenAnswerFileDlg();
 }
}

Assembly.SelectOpenAnswerFileDlg Method

This method displays the Open Answer File dialog box and returns the file name and path of the selected
answer file.

This method works only with a visible assembly.

Syntax

void SelectOpenAnswerFileDlg (ref string FileName)

Parameters Description

FileName The file name and path of the selected answer file.

Example

The following Visual C# example displays the "Open Answer File" dialog box and displays the file name
and path of the selected answer file.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs._Assembly3 asm = app.ActiveAssembly as HotDocs._Assembly3;
 String filename = "";

 asm.SelectOpenAnswerFileDlg(ref fileName);
 MessageBox.Show("The selected answer file is " + filename);
 }
}

COM API

143

Assembly.SendToWordProcessor Method

This method sends the resulting assembled document to the word processor.

Syntax

void SendToWordProcessor ()

Assembly.SetUserInterfaceItem Method

This method sets the state for the element user interface element. This method is useful to turn off
features the users of your integration should not have access to and enable features users may have
disabled.

Syntax

void SetUserInterfaceItem (HotDocs.HDAUI element, bool enabled)

Parameters Description

element The user interface element to change. This parameter must be a member of
the HDAUI enumeration.

 enabled Enables (true) or disables (false) the feature.

Example

The following Visual C# example begins an assembly after disabling three of the user interface elements:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.Assembly asm = new HotDocs.Assembly();

 asm.TemplatePath = @"C:\Documents\HotDocs\Templates\demoempl.docx";
 asm.Visible = true;

 // Disable the answer file drop-down list
 asm.SetUserInterfaceItem(HotDocs.HDAUI.AUIANSWERFILEDROPDOWN, false);

 // Disable the New Answers command

HotDocs API

144

 asm.SetUserInterfaceItem(HotDocs.HDAUI.AUIFILENEWANSWERS, false);

 // Disable the Open Answers command
 asm.SetUserInterfaceItem(HotDocs.HDAUI.AUIFILEOPENANSWERS, false);

 app.Assemblies.Add(asm);
 }
}

Assembly.UseAnswerFile Method

This method creates an AnswerCollection object, loads the answers from the answerFilePath answer file
into it, and sets the Assembly.AnswerCollection property to the object. This is just a shortcut method, as
everything it does you could do manually by using other methods and properties.

Syntax

void UseAnswerFile (string answerFilePath)

Parameters Description

answerFilePath File system path to an answer file.

Example

The following Visual C# example begins an assembly using a specific answer file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.Assembly asm = new HotDocs.Assembly();

 asm.TemplatePath = @"C:\temp\Demo Employment Agreement.docx";
 asm.UseAnswerFile(@"C:\temp\EmployeeAnswers.anx");
 asm.Visible = true;
 app.Assemblies.Add(asm);
 }
}

Assembly.AnswerCollection Property

COM API

145

[Read/Write] This property controls the AnswerCollection object used during assembly. The value of this
property is a reference to the AnswerCollection object used by the Assembly object.

Syntax

HotDocs._AnswerCollection AnswerCollection [set, get]

Assembly.AnswerSummaryPath Property

[Read/Write] This property controls the location to which the answer summary file is written. If this
property is set when the assembly starts, an Answer Summary will be written in the specified location
when the assembly is complete.

Answer summaries are HTML documents.

Syntax

string AnswerSummaryPath [set, get]

Assembly.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

Assembly.AssemblyHandle Property

[Read-only] This property reports the handle that can identify the assembly. This value is the same as the
assembly handle returned when the Assembly was added to the assembly queue.

HotDocs API

146

Syntax

int AssemblyHandle [get]

Assembly.CommandLine Property

[Write-only] This property sets command line options for the assembly as if it were started with a
particular command line from the library. Setting this property to a string is the same as if the string were
passed in from the library entry.

Assigning a string to this property actually appends the new command line string to any existing
command line options already set. Assigning an empty string ("") to this property removes any command
line options already set.

Syntax

string CommandLine [set]

Example

The following Visual C# example sets the CommandLine property:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.Assembly asm = new HotDocs.Assembly();

 asm.TemplatePath = @"C:\temp\Demo Employment Agreement.docx";
 asm.CommandLine = @"/af=C:\temp\EmployeeAnswers.anx";
 asm.Visible = true;
 app.Assemblies.Add(asm);
 }
}

Assembly.DocumentPath Property

[Read/Write] This property controls the location where the assembled document file is written. It is the file
path for the destination file.

COM API

147

Syntax

string DocumentPath [set, get]

Assembly.Hwnd Property

[Read-only] This property returns the window handle for the HotDocs Assembly interface.

Syntax

int Hwnd [get]

Assembly.KeepInQueue Property

[Read/Write] This Boolean property controls the behavior of the assembly queue. If it is true when the
assembly is complete, a reference will remain in the Assembly Queue window. If it is false, all references
to the assembly will be destroyed when the assembly is complete.

This property cannot be used to change the behavior of the active assembly (e.g.,
Application.ActiveAssembly). You must set this property before the assembly begins.

Syntax

bool KeepInQueue [set, get]

Assembly.Map Property

[Read/Write] This property controls which VarMap object is used during assembly.

HotDocs does not do anything with this VarMap object, but it keeps this reference for the
convenience of integrations. When an integration needs to provide an answer, it can look up the
variable in the VarMap object and see what mapping was provided by the user.

Syntax

HotDocs API

148

HotDocs._VarMap Map [set, get]

Assembly.PrintwhenComplete Property

[Read/Write] This Boolean property controls whether the document is automatically printed when the
assembly completes. It controls the same behavior as specifying a Print (/pr) option at the command line.

Syntax

bool PrintWhenComplete [set, get]

Assembly.PromptToSaveDocument Property

[Read/Write] This is a Boolean property that controls whether HotDocs will prompt to save a copy of the
assembled document at the end of the assembly. The initial value is the value stored in the Document
Assembly folder in HotDocs Options (Tools > Options > Document Assembly > Prompt to save
document when closing assembly window). If the integrator changes the PromptToSaveDocument
property, HotDocs will disregard the setting in HotDocs Options in favor of the value set in the
integration.

This property was introduced with the release of HotDocs 6.1 SP1.

Syntax

bool PromptToSaveDocument [set, get]

Assembly.QuestionSummaryPath Property

[Read/Write] This property controls the location to which the question summary file is written. If this
property is set when the assembly starts, a question summary will be written out as an HTML document
when the assembly is complete.

Syntax

string QuestionSummaryPath [set, get]

COM API

149

Assembly.ShowAnswerFileDialog Property

[Read/Write] This Boolean property controls whether or not the Save Answers dialog box appears at the
end of an assembly.

Syntax

bool ShowAnswerFileDialog [set, get]

Assembly.Status Property

[Read-only] This property tells what state the Assembly object is in.

It can be one or more of the following values from the HDASSEMBLYSTATUS enumeration:

Name Value Description

HDASMSTATUSCONFIRMED 2 The Assembly object is awaiting assembly.

HDASMSTATUSASSEMBLING 4 The Assembly object is being assembled.

HDASMSTATUSCOMPLETED 8 The Assembly object has been assembled and the assembly
completed with no errors.

HDASMSTATUSERROR 256 Assembly is complete, but an error occurred during assembly
and it did not complete successfully.

Because it can be combination of the above values, an integrator needs to check the bitwise AND
of the value and a mask to determine if one of the values is set.

Syntax

HotDocs.HDASSEMBLYSTATUS Status [get]

Example

The following Visual C# example displays the status of each assembly in the queue:

public class ExampleCode
{

HotDocs API

150

 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 foreach (HotDocs.Assembly assembly in app.Assemblies)
 {
 MessageBox.Show("The status for " + assembly.TemplateTitle + "is
" + assembly.Status);
 }
 }
}

Assembly.SuppressUnansweredWarning Property

[Read/Write] This is a Boolean property that sets the Display unanswered warning before saving
documents option for the given assembly. If this property is false, then HotDocs will display a warning
before the user saves the document or sends the document to the word processor if there are variables
which are used but not answered. If this property is true, then all such warnings are suppressed.

Syntax

bool SuppressUnansweredWarning [set, get]

Assembly.TemplateDesc Property

[Read/Write] This property contains the description for the template that will be used to assemble a
document. This property is for the integration programmer's convenience. It is set but is not used by
HotDocs internally.

Syntax

string TemplateDesc [set, get]

Assembly.TemplatePath Property

[Read/Write] This property contains the file system path for the template that will be used to assemble a
document.

COM API

151

Syntax

string TemplatePath [set, get]

Assembly.TemplateTitle Property

[Read/Write] This property contains the title for the template that will be used to assemble a document.

Syntax

string TemplateTitle [set, get]

Assembly.Visible Property

[Read/Write] This Boolean property determines if the assembly interface will be visible to the user. This
property must be set before assembly starts or it will have no effect. If Visible returns false, then it has the
same effect as specifying the No Assembly Window (/nw) option on the command line.

Syntax

bool Visible [set, get]

Assembly.OnAssemblyCompleteEvent Event

This event is fired when the assembly completes.

Syntax

void OnAssemblyCompleteEvent ()

Assembly.OnAssemblyStartEvent Event

HotDocs API

152

This event is fired when the assembly starts.

Syntax

void OnAssemblyStartEvent ()

Assembly.OnCanOpenFile Event

This event is fired when a file can be opened.

Syntax

void OnCanOpenFile (string FileName, ref bool bCanOpen, ref bool bOverride)

Parameters Description

FileName A file name.

bCanOpen Indicates if the file can be opened.

bOverride Return parameter:

• *override == true means that HotDocs will not open the file.
• *override == false means that HotDocs will continue normally.

Return Value

An integer indicating the index of the new Value within the Answer object.

Assembly.OnCloseAssemblyInterfaceEvent Event

This event is fired when assembly interface actually closes.

Syntax

void OnCloseAssemblyInterfaceEvent ()

COM API

153

Assembly.OnErrorEvent Event

This event is fired when an error occurs. By returning true for the override parameter, the integration can
tell HotDocs not to display any error messages, allowing the integration to either display its own error
message or deal with the error silently.

Syntax

void OnErrorEvent (int errCode, string errMesg, out bool override)

Parameters Description

errCode Numerical error code.

errMesg Text description of error.

override Return parameter:

• *override == true means that HotDocs will not display any user
interface indicating that an error occurred.

• *override == false means that HotDocs will display the normal error
notification.

Assembly.OnFileOpen Event

This event is fired when a file is opened.

Syntax

void OnFileOpen (HotDocs.HDAUI hdEvent, ref string FileName, ref string displayName,
ref bool vbDoDefaultOpen)

Parameters Description

hdEvent The user interface item selected. It is one of the values from the HAUI
enumeration

FileName The name of the file being opened.

displayName A descriptive name of the file being opened.

bOverride Return parameter:

HotDocs API

154

• *override == true means that HotDocs will not open the file.
• *override == false means that HotDocs will continue normally.

Assembly.OnFileSave Event

This event is fired when a file is saved.

Syntax

void OnFileSave (HotDocs.HDAUI hdEvent, ref string FileName, ref string displayName,
ref bool bOverride, ref bool vbDoDefaultSave)

Parameters Description

hdEvent The user interface item selected. It is one of the values from the HAUI
enumeration

FileName The name of the file being saved.

displayName A descriptive name of the file being opened.

bOverride Return parameter:

• *override == true means that HotDocs will not perform the file save.
• *override == false means that HotDocs will continue normally.

vbDoDefaultSave true/false (Boolean) value

Assembly.OnFileSelectEvent Event

This event is fired when a file is selected.

Syntax

void OnFileSelectEvent (HotDocs.HDAUI hdEvent, ref string FileName, bool
bSelectOnly, ref bool override)

Parameters Description

COM API

155

hdEvent The event that has occurred.

FileName The name of the selected file.

bSelectOnly true/false (Boolean) value

override Return parameter:

• *override == true means that HotDocs will not perform the default
file selection operation.

• *override == false means that HotDocs will continue normally.

Assembly.OnGetAnswerFileDisplayName Event

This event is fired when HotDocs gets the name of an answer file to display.

Syntax

void OnGetAnswerFileDisplayName (ref string FileName, ref string displayName)

Parameters Description

FileName The name of the answer file being displayed.

displayName A descriptive name for the answer file.

Assembly.OnGetMRUInfo Event

This event is fired when HotDocs gets information from the most recently used (MRU) list.

Syntax

void OnGetMRUInfo (ref string FileName, ref string displayName, ref bool bOverride)

Parameters Description

FileName The name of a file being retrieved.

displayName The descriptive name of a file being retrieved.

HotDocs API

156

bOverride Return parameter:

• *override == true means that HotDocs will not get the information
from the MRU list.

• *override == false means that HotDocs will continue normally.

Assembly.OnNeedAnswerEvent Event

This event is fired when an answer value is needed by the assembly, but not found in the AnswerCollection
answer set. It allows the integration to provide answers as they are needed, rather than trying to provide
all the answers before the assembly starts.

This event fires once for each answer, not for each value in an answer. This means that all the
values for repeated answers must be set during the first firing of this event for each answer.

Because of the complexity of answer repeat indexing, you should avoid using this event when
working with nested repeats.

Syntax

void OnNeedAnswerEvent (int AssemblyHandle, HotDocs.Answer pAnswer)

Parameters Description

assemblyHandle The assemblyhandle returned when the Assembly object was added to the
queue.

pAnswer The Answer object that represents the answer that needs a value. If the
integration wants to provide a value for this answer, the regular Answer
object methods are used to set the value. It can be queried to determine
which answer is needed.

Assembly.OnPostCloseAnswerFile Event

This event is fired after the answer file is closed.

Syntax

COM API

157

void OnPostCloseAnswerFile ()

Assembly.OnPostSaveDocumentEvent Event

This event is fired after a document is saved. The document can be an assembled document, a question
summary document, or an answer summary document.

Syntax

void OnPostSaveDocumentEvent (HotDocs.HDOUTPUTTYPE outputType, string docPath)

Parameters Description

outputType The type of document that was saved. It can be one of the following values
from the HDOUTPUTTYPE enumeration:

• HD_OUTPUT_DOCUMENT
• HD_OUTPUT_ANSWERSUMMARY
• HD_OUTPUT_QUESTIONSUMMARY

docPath The file system path where the file was saved.

Assembly.OnPreCloseAnswerFile Event

This event is fired when HotDocs prepares to close an answer file.

Syntax

void OnPreCloseAnswerFile (string FileName)

Parameters Description

FileName The name of the answer file being closed.

HotDocs API

158

Assembly.OnPreSaveDocumentEvent Event

This event is fired prior to saving the document. By setting *showui = false, the integration can prevent
the user interface relating to saving the document from showing. By setting *override = true, the
integration can prevent the save from happening.

Syntax

void OnPreSaveDocumentEvent (ref string pathName, HotDocs.HDOUTPUTTYPE outputType,
out bool showui, out bool override)

Parameters Description

pathName The path and file name that HotDocs believes the file should be saved to. This
might be an empty string ("") if there are no indicators. The integration can
change this value. If the value is changed, HotDocs will either save the file to
the new value (if no user interface is shown), or suggest the new value as the
location to save (if the user interface is shown).

outputType The type of document to be saved. It can be one of the following values from
the HDOUTPUTTYPE enumeration:

• HD_OUTPUT_DOCUMENT
• HD_OUTPUT_ANSWERSUMMARY
• HD_OUTPUT_QUESTIONSUMMARY

showui Return parameter. Specifies if HotDocs should display any user interface
associated with the save:

• *showui == true means the user interface is shown.
• *showui == false means the user interface is not shown.

override Return parameter:

• *override == true means that HotDocs will not perform the file save.
• *override == false means that HotDocs will continue normally.

Assembly.OnUserInterfaceEvent Event

This event is fired when the user selects certain options at the assembly interface. This can be useful if the
integration wants to override a particular HotDocs feature or command.

COM API

159

Syntax

void OnUserInterfaceEvent (HotDocs.HDAUI hdEvent, out bool override)

Parameters Description

hdEvent The user interface item selected. It will be one of the members of the HDAUI
enumeration.

override Return parameter:

• *override == true will cancel the user interface action.
• *override == false will allow the action to continue normally.

Assembly.OnUserMenuItemClickedEvent Event

This event is fired when the user selects an integration-defined menu item. (See
Assembly.AddUserMenuItem Method.)

Syntax

void OnUserMenuItemClickedEvent (int menuHandle)

Parameters Description

menuHandle The handle for the user-defined menu. This is the handle returned from
_Assembly.AddUserMenuItem().

Assembly.PostSaveAnswersEvent Event

In HotDocs 10 and earlier this event was listed as OnPostSaveAnswersEvent. It is intended to
eliminate the need to pass the AnswerCollection by pointer and instead wrap it in a object. This
should help Visual Basic programmers deal with the VARIANT event. This event should be
fired at the same time as OnPostSaveAnswersEvent.

This event is fired after an answer file is saved.

Syntax

HotDocs API

160

void PostSaveAnswersEvent (HotDocs._AnswerCollection answers)

Parameters Description

answers The answer collection that was saved to disk.

Assembly.PreSaveAnswersEvent Event

In HotDocs 10 and earlier this event was listed as OnPreSaveAnswersEvent. It is intended to
eliminate the need to pass the AnswerCollection by pointer and instead wrap it in a object. This
should help Visual Basic programmers deal with the VARIANT event. This event should be
fired at the same time as OnPreSaveAnswersEvent.

This event is fired after the user has indicated he or she wants to save the answers, but before the actual
save occurs. By setting *override == true, the integration can prevent the save from happening.

Syntax

void PreSaveAnswersEvent (HotDocs._AnswerCollection answers, out bool override)

Parameters Description

answers The AnswerCollection object that represents the answer file about to be
saved.

override Return parameter:

• *override == true means that HotDocs will not perform the answer
file save.

• *override == false means that HotDocs will continue normally.

HotDocs.AssemblyCollectionClass Object

HotDocs.AssemblyCollectionClass Object

This object represents the collection of Assembly objects awaiting assembly in the HotDocs assembly
queue. The integration cannot create this object. To use it, you must retrieve the Assemblies property from
the Application object.

COM API

161

General Information

ProgID: HotDocs.AssemblyCollection.11.0
HotDocs.AssemblyCollection (version-independent)

CLSID: {C5038B17-D521-4f4b-91C1-62F55A622D25}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
AssemblyCollection.

Name IID Added in

AssemblyCollection {BF92F712-50A9-4b2c-9D14-
0956C1883C5A}

Added in HotDocs 6.0

Methods

Method Description

Add

This method adds a HotDocs.Assembly object to the HotDocs assembly
queue.

AddToQueue

This method creates a new HotDocs.Assembly object and adds it to the
HotDocs assembly queue with a set of commonly used default values.

Clear

This method removes all the Assembly objects (except the currently executing
assembly) from the assembly collection.

FindByHandle

When given an assemblyHandle, this method returns the index for the
corresponding Assembly object.

Insert

This method inserts a HotDocs.Assembly object into the assembly queue at
the specified position. This method is similar to the AssemblyCollection.Add()
method, except it allows the integration to specify the location of the object
in the queue.

Item

This method retrieves the Indexth item from the collection and returns it to
the caller.

Move

This method moves the oldindex item in the collection to the newindex
position.

Remove

This method removes the Assembly object at the Indexth position in the
assembly queue. However, this method cannot remove the Assembly object
for the active assembly.

Properties

HotDocs API

162

Property Description

Application

[Read-only] This property returns a reference to the Application object.

Count

[Read-only] This property returns the number of items in the
AssemblyCollectionClass object.

AssemblyCollectionClass.Add Method

This method adds a HotDocs.Assembly object to the HotDocs assembly queue.

Syntax

int Add (HotDocs.Assembly newVal)

Parameters Description

newVal The Assembly object to add to the collection.

Return Value

A handle to identify the Assembly object.

AssemblyCollectionClass.AddToQueue Method

This method creates a new HotDocs.Assembly object and adds it to the HotDocs assembly queue with a
set of commonly used default values.

This method is simply a shortcut for adding an assembly to the queue.

Syntax

int AddToQueue (string templateFilePath, bool Visible, string docPath, string
answerPath)

Parameters Description

templateFilePath The file path and name for the template to be used for assembly. This must
point to a HotDocs template or the method will fail.

COM API

163

Visible Sets the Visible property for the Assembly object.

docPath The location for the assembled document. This is used for the
Assembly.DocumentPath property.

answerPath The file path and name of the answer file to use in the assembly.

Return Value

A handle to identify the Assembly object.

AssemblyCollectionClass.Clear Method

This method removes all the Assembly objects (except the currently executing assembly) from the
assembly collection.

Syntax

void Clear ()

AssemblyCollectionClass.FindByHandle Method

When given an assemblyHandle, this method returns the index for the corresponding Assembly object.

Syntax

int FindByHandle (int AssemblyHandle)

Parameters Description

assemblyHandle The handle returned when the Assembly object was added to the queue.

Return Value

The index for the Assembly object corresponding to the assemblyHandle.

HotDocs API

164

AssemblyCollectionClass.Insert Method

This method inserts a HotDocs.Assembly object into the assembly queue at the specified position. This
method is similar to the AssemblyCollection.Add() method, except it allows the integration to specify the
location of the object in the queue.

Syntax

int Insert (int index, HotDocs.Assembly newVal)

Parameters Description

Index The position in the assembly queue where the object should be inserted.

newval The new Assembly object.

Return Value

A handle to identify the Assembly object.

AssemblyCollectionClass.Item Method

This method retrieves the Indexth item from the collection and returns it to the caller.

Syntax

HotDocs.AssemblyItem (int index)

Parameters Description

Index The position of the desired item.

Return Value

The specified HotDocs.Assembly object.

AssemblyCollectionClass.Move Method

This method moves the oldindex item in the collection to the newindex position.

COM API

165

Syntax

void Move (int oldindex, int newindex)

Parameters Description

oldindex The index of the Assembly object to move.

newindex The new position for the Assembly object.

AssemblyCollectionClass.Remove Method

This method removes the Assembly object at the Indexth position in the assembly queue. However, this
method cannot remove the Assembly object for the active assembly.

Syntax

void Remove (int index)

Parameters Description

index The position of the Assembly object to remove.

AssemblyCollectionClass.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

HotDocs API

166

AssemblyCollectionClass.Count Property

[Read-only] This property returns the number of items in the AssemblyCollectionClass object.

Syntax

int Count [get]

HotDocs.Component Object

HotDocs.Component Object

This object represents a HotDocs variable or other component stored in a HotDocs component file.

General Information

ProgID: HotDocs.Component.11.0
HotDocs.Component (version-independent)

CLSID: {50DED91B-A330-48BA-B7F4-F48803D63D3F}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_Component2.

Name IID Added in

_Component {98A99D7D-FF5D-4A4F-A154-
BC8B9FFD597E}

Added in HotDocs 6.0

_Component2 {98A99D7E-FF5D-4A4F-A154-
BC8B9FFD597E}

Added in HotDocs 2005 SP1

_Component3 {98A99D7F-FF5D-4A4F-A154-
BC8B9FFD597E}

Added in HotDocs 2006

Methods

Method Description

DisplayEditor

This method displays a user interface for modifying a component's properties.
For example, if the component is a Text variable, this method displays the
Text Variable Editor.

COM API

167

Properties

Property Description

Application

[Read-only] This property returns a reference to the Application object.

DBName

[Read-only] This is a string property that tells the name of the database
component (if any) that links this variable component to a field in a database
table.

DialogName

[Read-only] This is a string property that specifies the name of the dialog in
which this variable component appears.

HelpText

[Read-only] This is a string property that tells what resource text has been
included for a variable.

Name

[Read-only] This is a string property that tells the name of the variable.

Prompt

[Read-only] This is a string property that tells the prompt of the variable.

Properties

[Read-only] This property returns a ComponentProperties object, which is a
collection of all properties associated with the Component object. Each
property in the collection is in turn represented by a ComponentProperty
object.

Title

[Read-only] This property returns the title of the component.

Type

[Read-only] This HDVARTYPE property tells which type the variable is. This
can be one of the values from the HDVARTYPE enumeration.

Component.DisplayEditor Method

This method displays a user interface for modifying a component's properties. For example, if the
component is a Text variable, this method displays the Text Variable Editor.

Syntax

void DisplayEditor (int parentWnd)

Parameters Description

parentWnd The parent window of the editor window to be displayed.

HotDocs API

168

Component.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

Component.DBName Property

[Read-only] This is a string property that tells the name of the database component (if any) that links this
variable component to a field in a database table.

Syntax

string DBName [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);

COM API

169

 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();
 }
}

Component.DialogName Property

[Read-only] This is a string property that specifies the name of the dialog in which this variable
component appears.

Syntax

string DialogName [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);
 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();

HotDocs API

170

 }
}

Component.HelpText Property

[Read-only] This is a string property that tells what resource text has been included for a variable.

Syntax

string HelpText [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);
 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();
 }
}

COM API

171

Component.Name Property

[Read-only] This is a string property that tells the name of the variable.

Syntax

string Name [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);
 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();
 }
}

Component.Prompt Property

[Read-only] This is a string property that tells the prompt of the variable.

Syntax

HotDocs API

172

string Prompt [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);
 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();
 }
}

Component.Properties Property

[Read-only] This property returns a ComponentProperties object, which is a collection of all properties
associated with the Component object. Each property in the collection is in turn represented by a
ComponentProperty object.

Syntax

HotDocs.ComponentProperties Properties [get]

COM API

173

Component.Type Property

[Read-only] This HDVARTYPE property tells which type the variable is. This can be one of the values from
the HDVARTYPE enumeration.

Syntax

HotDocs.HDVARTYPE Type [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);
 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();
 }
}

Component.Title Property

[Read-only] This property returns the title of the component.

HotDocs API

174

This property was introduced with the release of HotDocs 2005 SP1.

Syntax

string Title [get]

Example

The following Visual C# example displays information about each of the variable components in a given
component file:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 for (int i=0; i < ccl.Count; i++)
 {
 comp = ccl.Item(i, ref varType) as HotDocs.Component;

 Console.WriteLine("Name: {0}",comp.Name);
 Console.WriteLine("Type: {0}", comp.Type);
 Console.WriteLine("Title:{0}", comp.Title);
 Console.WriteLine("Prompt: {0}", comp.Prompt);
 Console.WriteLine("Help Text: {0}", comp.HelpText);
 Console.WriteLine("Dialog Name: {0}", comp.DialogName);
 Console.WriteLine("Database Name: {0}", comp.DBName);
 Console.WriteLine();
 }
 Console.ReadKey();
 }
}

HotDocs.ComponentCollection Object

HotDocs.ComponentCollection Object

This object represents a collection of HotDocs.Component objects. The backing data source for a
ComponentCollection is a HotDocs component file.

COM API

175

General Information

ProgID: HotDocs.ComponentCollection.11.0
HotDocs.ComponentCollection (version-independent)

CLSID: {2C2098F9-D471-4806-9759-504F65C4171B}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_ComponentCollection4.

Name IID Added in

_ComponentCollection {2B539DA7-2727-4AF0-A166-
009CA0F48A5A}

Added in HotDocs 6.0

_ComponentCollection2 {2B539DA8-2727-4AF0-A166-
009CA0F48A5A}

Added in HotDocs 6.1

_ComponentCollection3 {2B539DA9-2727-4AF0-A166-
009CA0F48A5A}

Added in HotDocs 2005

_ComponentCollection4 {2B539DAA-2727-4AF0-A166-
009CA0F48A5A}

Added in HotDocs 2006

Methods

Method Description

Create

This method creates a new, empty component file. For example, you may
want to create a new component file so you can seed it with data (variables)
that correspond to your integrating application. If filePath refers to a file that
already exists, an error is returned.

CreateComponent

This method allows you to create virtually any type of HotDocs variable or
component in a component file. Once the component is created, its
properties can be set and modified using the ComponentProperties object. If
the component already exists in the component collection, this method does
nothing.

CreateVariable

This method creates a new variable in the open component file. You can only
use it to create Text, Number, Date, and True/False variables. (Other variable
types cannot be created using this method.) Also, if a variable with the same
name already exists in the component file, nothing will happen. You can also
use the CreateComponent method, which allows you to create many other
types of variables and components.

Item

This method retrieves a Component object from a ComponentCollection.

Open

This method opens a HotDocs component file and populates the
ComponentCollection with the variables from it. If the component file opened

HotDocs API

176

by this method points to separate shared component file, the shared
component file will be opened and used to populate the
ComponentCollection.

OpenBase

This method opens a HotDocs component file and populates the
ComponentCollection with the variables from it. Unlike the Open method,
however, this method does not open shared component files. For example, if
you open component file A that points to component file B, the
ComponentCollection would contain the variables from component file A.

OpenForEdit

This method opens a component file for editing.

Properties

Property Description

Application

[Read-only] This property returns a reference to the Application object.

Count

[Read-only] This property returns the number of Component objects in the
ComponentCollection.

FileName

[Read-only] Returns the file name of the HotDocs component file. To specify
the path for the backing component file, pass the file path and name to
_ComponentCollection.Open().

OnlyVariables

[Read/Write] This property acts as a filter for the component collection to
limit the items to variables or all components. If it is true, the Count will
include only variables, and if it is false, it will include all variables and
components. Likewise, if you use an integer as the index with the Item
method, the components you can retrieve will be either all components or
only variables. (Even with this property set to true, you can refer to any
component using the Item method if you specify the component name and
type instead of just the index number.) The default value for this property is
true.

ReadOnly

[Read-only] This property indicates whether the component collection
(component file) is read-only or writable.

ComponentCollection.Create Method

This method creates a new, empty component file. For example, you may want to create a new
component file so you can seed it with data (variables) that correspond to your integrating application. If
filePath refers to a file that already exists, an error is returned.

This method was introduced with the release of HotDocs 6.1.

COM API

177

Syntax

void Create (string filePath)

Parameters Description

filePath The file system path of the new component file.

Example

The following Visual C# example creates a new component file and creates nine Text variables in it.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Create(@"C:\temp\Createdfile.cmp");
 for (int i = 1; i < 10; i++)
 ccl.CreateVariable("Variable " +
i.ToString(),HotDocs.HDVARTYPE.HD_TEXTTYPE, "Prompt for Variable " +
i.ToString());
 }
}

ComponentCollection.CreateComponent Method

This method allows you to create virtually any type of HotDocs variable or component in a component
file. Once the component is created, its properties can be set and modified using the
ComponentProperties object. If the component already exists in the component collection, this method
does nothing.

This method was introduced with the release of HotDocs 2006.

Syntax

void CreateComponent (string componentName, HotDocs.HDVARTYPE componentType)

Parameters Description

componentName The name of the component to create.

HotDocs API

178

componentType The type of the new component.

Example

The following Visual C# example creates a new component and then displays the names of each property
in its ComponentProperties collection.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.OpenForEdit(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 HotDocs.HDVARTYPE varType = HotDocs.HDVARTYPE.HD_TEXTTYPE;
 HotDocs.Component comp;

 ccl.CreateComponent("Attorney Name", varType);

 comp = ccl.Item("Attorney Name", ref varType) as HotDocs.Component;

 for (int i = 0; i < comp.Properties.Count; i++)
 Console.WriteLine(comp.Properties.Item(i).Name);

 Console.ReadKey();
 }
}

ComponentCollection.CreateVariable Method

This method creates a new variable in the open component file. You can only use it to create Text,
Number, Date, and True/False variables. (Other variable types cannot be created using this method.) Also,
if a variable with the same name already exists in the component file, nothing will happen. You can also
use the CreateComponent method, which allows you to create many other types of variables and
components.

This method was introduced with the release of HotDocs 6.1.

Syntax

void CreateVariable (string variableName, HotDocs.HDVARTYPE varType, string Prompt)

Parameters Description

COM API

179

variableName The name of the variable to create.

varType The type of variable to create. This value can be:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE

prompt [optional] The prompt for the newly created variable.

Example

The following Visual C# example creates a new component file and creates nine Text variables in it.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();

 ccl.Create(@"C:\temp\Createdfile.cmp");

 for (int i = 1; i < 10; i++)
 ccl.CreateVariable("Variable " + i.ToString(),
HotDocs.HDVARTYPE.HD_TEXTTYPE,Prompt for Variable " + i.ToString());
 }
}

ComponentCollection.Item Method

This method retrieves a Component object from a ComponentCollection.

Syntax

HotDocs._Component Item (object index, ref HotDocs.HDVARTYPE varType)

Parameters Description

index This parameter can be either a number or a string. If it is a number, it
represents the position of the desired Component object in the collection. If it
is a string, it represents the variable name of the desired Component object.
Since HotDocs variables are identified by name and type, the second
parameter, vartype, must be set to the correct HDVARTYPE value when calling

HotDocs API

180

this method with a string for the index parameter.

If the ComponentCollection.OnlyVariables property is true, a numerical index
can only access components that are Text, Number, Date, True/False, and
Multiple Choice variables. If you want to access other component types with a
numerical index, set OnlyVariables to false.

vartype [optional] When the index parameter is a number, this parameter returns the
correct HDVARTYPE for the retrieved Component object. When the index
parameter is a string, this parameter must be the HDVARTYPE for the
component with that variable name.

Return Value

The Component object requested.

ComponentCollection.Open Method

This method opens a HotDocs component file and populates the ComponentCollection with the variables
from it. If the component file opened by this method points to separate shared component file, the
shared component file will be opened and used to populate the ComponentCollection.

Syntax

void Open (string componentFileName)

Parameters Description

componentFileName The file system path of a HotDocs template, clause library, or component file.
In the case of a template or clause library, this method will open the
associated component file.

You can close an open component file by disposing the ComponentCollection object.

ComponentCollection.OpenBase Method

This method opens a HotDocs component file and populates the ComponentCollection with the variables
from it. Unlike the Open method, however, this method does not open shared component files. For

COM API

181

example, if you open component file A that points to component file B, the ComponentCollection would
contain the variables from component file A.

Syntax

void OpenBase (string FileName)

Parameters Description

FileName The file system path of a HotDocs template, clause library, or component file.
In the case of a template or clause library, this method will open the
associated component file.

ComponentCollection.OpenForEdit Method

This method opens a component file for editing.

This method was introduced with the release of HotDocs 2006.

Syntax

void OpenForEdit (string FileName)

Parameters Description

FileName The file name and path of the component file to open.

ComponentCollection.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

HotDocs API

182

ComponentCollection.Count Property

[Read-only] This property returns the number of Component objects in the ComponentCollection.

Syntax

int Count [get]

Example

The following Visual C# example displays a list of all variable components in a given component file.

public class ExampleCode
{
 static void Main()
 {
 HotDocs.ComponentCollection ccl = new HotDocs.ComponentCollection();
 string msg;

 ccl.Open(@"C:\Documents\HotDocs\Templates\demoempl.cmp");

 for (int i = 1; i < ccl.Count; i++)
 {
 msg = ccl.Item(i).Name + " - ";
 switch (ccl.Item(i).Type)
 {
 case HDVARTYPE.HD_TEXTTYPE:
 Console.WriteLine(msg + " Text Variable");
 break;
 case HDVARTYPE.HD_NUMBERTYPE:
 Console.WriteLine(msg + " Number Variable");
 break;
 case HDVARTYPE.HD_DATETYPE:
 Console.WriteLine(msg + " Date Variable");
 break;
 case HDVARTYPE.HD_TRUEFALSETYPE:
 Console.WriteLine(msg + " True/False Variable");
 break;
 case HDVARTYPE.HD_MULTCHOICETYPE:
 Console.WriteLine(msg + " Multiple Choice Variable");
 break;
 case HDVARTYPE.HD_COMPUTATIONTYPE:
 Console.WriteLine(msg + " Computation Variable");
 break;
 }
 }
 Console.ReadKey();
 }

COM API

183

}

ComponentCollection.FileName Property

[Read-only] Returns the file name of the HotDocs component file. To specify the path for the backing
component file, pass the file path and name to _ComponentCollection.Open().

Syntax

string FileName [get]

ComponentCollection.OnlyVariables Property

[Read/Write] This property acts as a filter for the component collection to limit the items to variables or all
components. If it is true, the Count will include only variables, and if it is false, it will include all variables
and components. Likewise, if you use an integer as the index with the Item method, the components you
can retrieve will be either all components or only variables. (Even with this property set to true, you can
refer to any component using the Item method if you specify the component name and type instead of
just the index number.) The default value for this property is true.

This property was introduced with the release of HotDocs 2006.

Syntax

bool OnlyVariables [set, get]

ComponentCollection.ReadOnly Property

[Read-only] This property indicates whether the component collection (component file) is read-only or
writable.

This property was introduced with the release of HotDocs 2006.

Syntax

HotDocs API

184

bool ReadOnly [get]

HotDocs.ComponentProperties Object

HotDocs.ComponentProperties Object

This object represents a collection of HotDocs.ComponentProperty objects.

General Information

ProgID: HotDocs.ComponentProperties.11.0
HotDocs.ComponentProperties (version-independent)

CLSID: {8378295C-C9F5-4364-AA28-AB2A4CEDCD87}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_ComponentProperties.

Name IID Added in

_ComponentProperties {FC5369B0-97B8-4822-9D6E-
992D124222CF}

Added in HotDocs 2006

Methods

Method Description

Add This method adds a new ComponentProperty to the ComponentProperties
collection.

Item This method returns a specific ComponentProperty object from the
ComponentProperties collection.

Properties

Property Description

Count [Read-only] This property returns the number of properties in the
ComponentProperties collection.

COM API

185

ComponentProperties.Add Method

This method adds a new ComponentProperty to the ComponentProperties collection.

This method was introduced with the release of HotDocs 2006.

Syntax

HotDocs.ComponentProperty Add (string propertyName, object newVal)

Parameters Description

propertyName The name of the property to add to the collection.

New, custom property names should always be in ALL CAPS. If you create a
property name that is not in all capital letters and later try to refer to it that
way, you will receive an error because HotDocs converts the name you specify
to all capitals when it creates the property.) Existing property names, such as
the default properties HotDocs assigns to all components, may be mixed
case.

newVal The value to assign to the new property.

ComponentProperties.Item Method

This method returns a specific ComponentProperty object from the ComponentProperties collection.

This method was introduced with the release of HotDocs 2006.

Syntax

HotDocs.ComponentProperty Item (object index)

Parameters Description

index An index to specify which property to retrieve. This can be either a number or
a property name.

Return Value

A specific ComponentProperty object from the ComponentProperties collection.

HotDocs API

186

ComponentProperties.Count Property

[Read-only] This property returns the number of properties in the ComponentProperties collection.

This property was introduced with the release of HotDocs 2006.

Syntax

int Count [get]

HotDocs.ComponentProperty Object

HotDocs.ComponentProperty Object

This object represents a specific property of a HotDocs component. For example, it may be the title or
prompt of a variable.

General Information

ProgID: HotDocs.ComponentProperty.11.0
HotDocs.ComponentProperty (version-independent)

CLSID: {8578D0FF-563A-4A7C-A3B7-08AC6448C3C8}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_ComponentProperty.

Name IID Added in

_ComponentProperty {24048358-5809-46AC-A294-
3C1ED9DE10E8}

Added in HotDocs 2006

Properties

Property Description

Name

[Read-only] This property returns the name of the component property. (A list
of the names of HotDocs-defined properties can be found here.)

COM API

187

ReadOnly

[Read-only] This Boolean property indicates whether or not the component
property is read-only. For example, checking the value of this property in your
code before you change the value of a property can avoid unnecessary
problems.

Value

[Read/Write] This property returns the value stored in the component
property. You can use this property to read the existing value of a property or
change its value as needed. (Before changing the value, however, make sure
the property is not read-only.)

VariantType

[Read-only] This property returns an integer corresponding to the component
property's variant type.

ComponentProperty.Name Property

[Read-only] This property returns the name of the component property. (A list of the names of HotDocs-
defined properties can be found here.)

This property was introduced with the release of HotDocs 2006.

Syntax

string Name [get]

ComponentProperty.ReadOnly Property

[Read-only] This Boolean property indicates whether or not the component property is read-only. For
example, checking the value of this property in your code before you change the value of a property can
avoid unnecessary problems.

This property was introduced with the release of HotDocs 2006.

Syntax

bool ReadOnly [get]

HotDocs API

188

ComponentProperty.Value Property

[Read/Write] This property returns the value stored in the component property. You can use this property
to read the existing value of a property or change its value as needed. (Before changing the value,
however, make sure the property is not read-only.)

This property was introduced with the release of HotDocs 2006.

Syntax

object Value [set, get]

ComponentProperty.VariantType Property

[Read-only] This property returns an integer corresponding to the component property's variant type.

This property was introduced with the release of HotDocs 2006.

Syntax

int VariantType [get]

Return Value

VariantType may return one of the following values:

Type Description

3 Integer

5 R8

8 String

11 Boolean

8204 Array

HotDocs.Dependency Object

COM API

189

HotDocs.Dependency Object

This object represents a single dependency (file) that is required by a template. A dependency may be a
template, component, image, or any other kind of file required by the template.

General Information

ProgID: HotDocs.Dependency.11.0 HotDocs.Dependency (version-independent)
CLSID: {8DB78A29-8734-4d6a-8BF2-B32596905EE9}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_Dependency.

Name IID Added in

_Dependency {E7C21BE3-BA72-4d17-A3DD-
18AA82AB255E}

Added in HotDocs 10.1

Properties

Property Description

Dependencies

[Read-only] This property returns a collection of depenencies on which the
current dependency depends.

DependencyType

[Read-only] This property returns one of the values from the DependencyType
Enumeration that indicates what kind of dependency it is.

Target

[Read-only] This property returns the target name of the dependency. For
example, if your template contains an INSERT instruction, the target of the
dependency as a result of that instruction is the name of the template file
being inserted.

Dependency.Dependencies Property

[Read-only] This property returns a collection of depenencies on which the current dependency depends.

Syntax

HotDocs.DependencyCollection Dependencies [get]

HotDocs API

190

Dependency.DependencyType Property

[Read-only] This property returns one of the values from the DependencyType Enumeration that indicates
what kind of dependency it is.

Syntax

HotDocs.DependencyType DependencyType [get]

Dependency.Target Property

[Read-only] This property returns the target name of the dependency. For example, if your template
contains an INSERT instruction, the target of the dependency as a result of that instruction is the name of
the template file being inserted.

Syntax

string Target [get]

HotDocs.DependencyCollection Object

HotDocs.DependencyCollection Object

This object represents a collection of Dependency objects, which are required by a given template. This
collection may be accessed through the TemplateInfo object.

General Information

ProgID: HotDocs.DependencyCollection.11.0
HotDocs.DependencyCollection (version-independent)

CLSID: {4ADA1473-8871-4c9f-B630-9D3D461991BC}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_DependencyCollection.

COM API

191

Name IID Added in

_DependencyCollection {F846631F-E8E8-4dba-B139-
8547D5A3BBEA}

Added in HotDocs 10.1

Methods

Method Description

GetEnumerator

This method returns an IEnumerator, which you can use to iterate through all
dependencies in the collection.

Item

This method returns a specific Dependency object from the collection.

Properties

Property Description

Count

[Read-only] This property returns the number of dependencies in the
collection.

DependencyCollection.GetEnumerator Method

 This method returns an IEnumerator, which you can use to iterate through all dependencies in the
collection.

Syntax

 IEnumerator GetEnumerator ()

DependencyCollection.Item Method

 This method returns a specific Dependency object from the collection.

Syntax

HotDocs.Dependency Item (int index)

HotDocs API

192

Parameters Description

index The index number of the dependency to retrieve.

DependencyCollection.Count Property

[Read-only] This property returns the number of dependencies in the collection.

Syntax

int Count [get]

HotDocs.Icon Object

HotDocs.Icon Object

This object represents an icon, which you can display next to a custom menu command. You can also
overlay an icon on top of the icons displayed next to items in the HotDocs library.

General Information

ProgID: HotDocs.Icon.11.0
HotDocs.Icon (version-independent)

CLSID: {D1B6F1CC-C9DA-47a1-B58A-7BF32EB62CE2}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is _Icon.

Name IID Added in

_Icon {D1B6F1CB-C9DA-47a1-B58A-
7BF32EB62CE2}

HotDocs 6.2 SP1

Methods

Method Description

LoadBitmap

This method loads a bitmap (.bmp) file.

COM API

193

LoadIcon

This method loads an icon (.ico) file.

Properties

Property Description

HBITMAP

[Write-only] This property sets the HBITMAP for the icon.

HICON

[Write-only] This property sets the HICON for the icon.

index

[Read/Write] This property sets or returns the index of the icon.

maskColor

[Read/Write] This property sets or returns the mask color for an icon loaded
from a bitmap (.bmp) file. It has no effect on icons loaded from an icon (.ico)
file because those files have an embedded mask.

This method is only used in conjunction with a HotDocs Plugin.

Icon.LoadBitmap Method

This method loads a bitmap (.bmp) file.

Syntax

void LoadBitmap(string FileName)

Parameters Description

FileName The name of the bitmap file to load.

Icon.LoadIcon Method

This method loads an icon (.ico) file.

Syntax

void LoadIcon(string FileName)

Parameters Description

HotDocs API

194

FileName The name of the icon file to load.

Example

The following Visual C# example adds a menu item to the File menu in the HotDocs library window with
your chosen icon. This example can only be used in conjunction with a Plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 //Important: HotDocs.Icon can only be used in conjunction with a
Plugin.
 HotDocs.Icon icon = new HotDocs.Icon();
 icon.LoadIcon(@"C:\images\UserMenuIcon.ico");
 app.AddUserMenuItem2("User Menu Entry #1", HDLIMENU.LI_FILE, 5,
icon);

 Marshal.ReleaseComObject(icon);
 Marshal.ReleaseComObject(app);
 }
}

Icon.HBITMAP Property

[Write-only] This property sets the HBITMAP for the icon.

Syntax

uint HBITMAP [set]

Icon.HICON Property

[Write-only] This property sets the HICON for the icon.

Syntax

uint HICON [set]

COM API

195

Icon.index Property

[Read/Write] This property sets or returns the index of the icon.

Syntax

int index [set, get]

Icon.maskColor Property

[Read/Write] This property sets or returns the mask color for an icon loaded from a bitmap (.bmp) file. It
has no effect on icons loaded from an icon (.ico) file because those files have an embedded mask.

maskColoris treated directly as a Win32 COLORREF value, which has a hexadecimal form of
0x00bbggrr. (The low-order byte contains the red value, the second byte contains the green
value, and the third byte contains the blue value.)

Syntax

uint maskColor [set, get]

HotDocs.Library Object

HotDocs.Library Object

This object represents a HotDocs library (.HDL) file. It allows an integration to iterate through all the items
in the library to inspect, add, or delete items.

General Information

ProgID: HotDocs.Library.11.0
HotDocs.Library (version-independent)

CLSID: {06B3E595-39E0-4b08-B719-8BCE64A04D70}

HotDocs API

196

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is _Library2.

Name IID Added in

_Library {FC0AEADD-27D4-460b-8D64-
A8CFBC2EFAEC}

Added in HotDocs 6.0

_Library2 {FC0AEADE-27D4-460b-8D64-
A8CFBC2EFAEC}

Added in HotDocs 2005

Methods

Method Description

Close

This method closes an open library file.

New

This method creates a new library file and opens it. If you pass in a
libFileName that already exists, then that file is opened using the Open
method. Once you are finished using the library, close it using the Close
method.

Open

This method opens an existing library file. If the file specified by fileName
doesn't exist, this method will return an error. (To create and open a new
library file, use the New method.) When you are finished using the library, you
should close it using the Close method.

Save

This method saves the library to disk. HotDocs saves the library to the
location specified in the New or Open method call.

Properties

Property Description

Application

[Read-only] This property returns a reference to the Application object.

Description

[Read/Write] This property sets or returns the description for the library. (The
description appears in the Properties tab when the top folder of the library is
selected.)

MainFolder

[Read-only] This property returns a LibraryEntity object representing the root
folder of the library.

Redraw

[Write-only] This Boolean property causes the library window to be redrawn
(refreshed).

Title

[Read/Write] This property sets or returns the title for the library. (The title
appears as the top folder in the library window.)

COM API

197

Library.Close Method

This method closes an open library file.

Syntax

void Close ()

Library.New Method

This method creates a new library file and opens it. If you pass in a libFileName that already exists, then
that file is opened using the Open method. Once you are finished using the library, close it using the Close
method.

HotDocs automatically maintains the state of the library file currently opened in the library
interface. HotDocs always has a library open, even if the interface is not visible. This will cause
problems for integrators that attempt to make changes to the library file that HotDocs has open
using the Library object. (Changes that are made through the _Library and _LibraryEntity
interfaces may not be saved correctly.) For this reason, it is recommended that the integration
change the currently open library file to some known file using the _Application.OpenLibrary()
method before attempting to edit a library using these interfaces.

Syntax

void New (string libFileName)

Parameters Description

libFileName The library file to create.

Library.Open Method

This method opens an existing library file. If the file specified by fileName doesn't exist, this method will
return an error. (To create and open a new library file, use the New method.) When you are finished using
the library, you should close it using the Close method.

HotDocs API

198

HotDocs automatically maintains the state of the library file currently opened in the library
interface. HotDocs always has a library open, even if the interface is not visible. This will cause
problems for integrators that attempt to make changes to the library file that HotDocs has open
using the Library object. (Changes that are made through the _Library and _LibraryEntity
interfaces may not be saved correctly.) For this reason, it is recommended that the integration
change the currently open library file to some known file using the _Application.OpenLibrary()
method before attempting to edit a library using these interfaces.

Syntax

void Open (string libFileName)

Parameters Description

libFileName The library file to open.

Library.Save Method

This method saves the library to disk. HotDocs saves the library to the location specified in the New or
Open method call.

HotDocs automatically maintains the state of the library file currently opened in the library
interface. HotDocs always has a library open, even if the interface is not visible. This will cause
problems for integrators that attempt to make changes to the library file that HotDocs has open
using the Library object. (Changes that are made through the _Library and _LibraryEntity
interfaces may not be saved correctly.) For this reason, it is recommended that the integration
change the currently open library file to some known file using the _Application.OpenLibrary()
method before attempting to edit a library using these interfaces.

Syntax

void Save ()

Library.Application Property

[Read-only] This property returns a reference to the Application object.

COM API

199

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

Library.Description Property

[Read/Write] This property sets or returns the description for the library. (The description appears in the
Properties tab when the top folder of the library is selected.)

HotDocs automatically maintains the state of the library file currently opened in the library
interface. HotDocs always has a library open, even if the interface is not visible. This will cause
problems for integrators that attempt to make changes to the library file that HotDocs has open
using the Library object. (Changes that are made through the _Library and _LibraryEntity
interfaces may not be saved correctly.) For this reason, it is recommended that the integration
change the currently open library file to some known file using the _Application.OpenLibrary()
method before attempting to edit a library using these interfaces.

Syntax

string Description [set, get]

Library.MainFolder Property

[Read-only] This property returns a LibraryEntity object representing the root folder of the library.

Syntax

HotDocs.LibraryEntity MainFolder [get]

Library.Redraw Property

HotDocs API

200

[Write-only] This Boolean property causes the library window to be redrawn (refreshed).

This property was introduced with the release of HotDocs 2005.

Syntax

bool Redraw [set]

Library.Title Property

[Read/Write] This property sets or returns the title for the library. (The title appears as the top folder in the
library window.)

HotDocs automatically maintains the state of the library file currently opened in the library
interface. HotDocs always has a library open, even if the interface is not visible. This will cause
problems for integrators that attempt to make changes to the library file that HotDocs has open
using the Library object. (Changes that are made through the _Library and _LibraryEntity
interfaces may not be saved correctly.) For this reason, it is recommended that the integration
change the currently open library file to some known file using the _Application.OpenLibrary()
method before attempting to edit a library using these interfaces.

Syntax

string Title [set, get]

HotDocs.LibraryEntity Object

HotDocs.LibraryEntity Object

This object represents any valid item in a HotDocs library, including folders, templates, clause libraries,
URLs, documents, and so forth.

General Information

ProgID: HotDocs.LibraryEntity.11.0
HotDocs.LibraryEntity (version-independent)

CLSID: {4D54CA35-5FB1-4e93-905C-84EE9B1FE69B}

COM API

201

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_LibraryEntity.

Name IID Added in

_LibraryEntity {84CEB33D-E30D-4d7e-9ABA-
C6D6D9EDCBF3}

Added in HotDocs 2005 SP2

_LibraryEntity2 {84CEB33E-E30D-4d7e-9ABA-
C6D6D9EDCBF3}

Added in HotDocs 2005 SP2

Methods

Method Description

AddFolder

This method adds a new folder to the library. The LibraryEntity object on
which this method is called must represent a folder in which the new
subfolder will be added.

AddTemplate

This method adds a new item to a library folder. The LibraryEntity object on
which this method is called must represent a folder to which the new item will
be added.

Item

This method returns the specified item from the subordinate _LibraryEntity
collection. The _LibraryEntity object on which this method is called must
represent a folder, since templates have no subordinate objects in a library.

Remove

This method removes the LibraryEntity object from the library.

Properties

Property Description

Application

[Read-only] This property returns a reference to the Application object.

Count

[Read-only] This property returns the number of subordinate objects in the
collection. The LibraryEntity object on which this property is called should
represent a folder, since templates have no subordinate objects in a library.

Description

[Read/Write] This property sets/returns the description for selected library
item.

ID

[Read-only] This property returns a numerical identifier for the LibraryEntity.

isFolder

[Read-only] If this Boolean property is true, then the _LibraryEntity object
represents a folder. However, if it is false, the object represents some other
library item, such as a template, clause library, URL, and so forth.

OverlayIndex

[Read/Write] This property is a long index to the Icon object. (To clear an
overlay, set the index to -1.)

HotDocs API

202

Parent

[Read-only] This property returns a LibraryEntity object for the parent object.
If the current object is the root of the Library, then the return value is NULL.

TemplateFullPath

[Read-only] This property returns the full file system path of the template
represented by the LibraryEntity. This is different than the TemplatePath
property, which may contain only a file name or a reference path and file
name.

TemplatePath

[Read/Write] This property sets/returns the file system path for the template.
The LibraryEntity object on which this property is called must represent a
non-folder entity because folders have no file system path.

Title

[Read/Write] This property sets/returns the title for the object. The title is the
text that appears next to the icon in the list of library items. It also appears in
the Properties tab of the library window when the item is selected and
viewed.

LibraryEntity.AddFolder Method

This method adds a new folder to the library. The LibraryEntity object on which this method is called must
represent a folder in which the new subfolder will be added.

Syntax

HotDocs.LibraryEntity AddFolder (string folderTitle, string Description, int atIndex
)

Parameters Description

folderTitle The title of the new folder.

Description The description of the new folder

atIndex [optional] The index (in the collection of subordinate objects) of where to
insert the new folder. If this parameter is omitted, or if its value is -1, the new
folder is added at the end of collection.

Return Value

A LibraryEntity object that represents the newly created folder.

COM API

203

LibraryEntity.AddTemplate Method

This method adds a new item to a library folder. The LibraryEntity object on which this method is called
must represent a folder to which the new item will be added.

Syntax

void AddTemplate (string tplTitle, string filePath, string Description, int atIndex
)

Parameters Description

title The title of the new library item (e.g., template, Web address, URL, or clause
library).

filePath The file path for the new library item. (For a Web address, this is the URL.)

Description The description of the new library item.

atIndex [optional] The position in the folder where the new library item will be
inserted. If this parameter is omitted, or if its value is -1, the new item is
added at the bottom of the folder.

LibraryEntity.Item Method

This method returns the specified item from the subordinate _LibraryEntity collection. The _LibraryEntity
object on which this method is called must represent a folder, since templates have no subordinate
objects in a library.

Syntax

HotDocs.LibraryEntity Item (int index)

Parameters Description

index The index in the collection of subordinate objects for the object desired. The
index must be in the range 0..Count -1.

Return Value

A LibraryEntity object that represents the desired object.

HotDocs API

204

LibraryEntity.Remove Method

This method removes the LibraryEntity object from the library.

Syntax

void Remove ()

LibraryEntity.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

LibraryEntity.Count Property

[Read-only] This property returns the number of subordinate objects in the collection. The LibraryEntity
object on which this property is called should represent a folder, since templates have no subordinate
objects in a library.

Syntax

int Count [get]

LibraryEntity.Description Property

[Read/Write] This property sets/returns the description for selected library item.

COM API

205

Syntax

string Description [set, get]

LibraryEntity.ID Property

[Read-only] This property returns a numerical identifier for the LibraryEntity.

Syntax

int ID [get]

LibraryEntity.IsFolder Property

[Read-only] If this Boolean property is true, then the _LibraryEntity object represents a folder. However, if
it is false, the object represents some other library item, such as a template, clause library, URL, and so
forth.

Syntax

bool isFolder [get]

LibraryEntity.OverlayIndex Property

[Read/Write] This property is a long index to the Icon object. (To clear an overlay, set the index to -1.)

Syntax

int OverlayIndex [set, get]

LibraryEntity.Parent Property

HotDocs API

206

[Read-only] This property returns a LibraryEntity object for the parent object. If the current object is the
root of the Library, then the return value is NULL.

Syntax

HotDocs.LibraryEntity Parent [get]

LibraryEntity.TemplateFullPath Property

[Read-only] This property returns the full file system path of the template represented by the LibraryEntity.
This is different than the TemplatePath property, which may contain only a file name or a reference path
and file name.

Syntax

string TemplateFullPath [get]

LibraryEntity.TemplatePath Property

[Read/Write] This property sets/returns the file system path for the template. The LibraryEntity object on
which this property is called must represent a non-folder entity because folders have no file system path.

Syntax

string TemplatePath [set, get]

LibraryEntity.Title Property

[Read/Write] This property sets/returns the title for the object. The title is the text that appears next to the
icon in the list of library items. It also appears in the Properties tab of the library window when the item is
selected and viewed.

Syntax

string Title [set, get]

COM API

207

HotDocs.Plugin Object

HotDocs.Plugin Object

This object represents a HotDocs plug-in. It allows an integration to get information about a plug-in, such
as its CLSID or Description.

This object was introduced with the release of HotDocs 2005 SP2.

General Information

ProgID: HotDocs.Plugin.11.0
HotDocs.Plugin (version-independent)

CLSID: {4D54CA36-5FB1-4e93-905C-84EE9B1FE69B}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is _Plugin.

Name IID Added in

_Plugin {84CEB33F-E30D-4d7e-9ABA-
C6D6D9EDCBF3}

Added in HotDocs 2005 SP2

Properties

Property Description

CLSID

[Read/Write] This property sets/returns the class ID (CLSID) of the plug-in.
The CLSID should be surrounded by braces ({}). For example, {12345678-
1111-2222-AAAA-DDDDDDDDDDDD}.

Description

[Read/Write] This property sets/returns the description of the plug-in.
HotDocs does not currently display this description in the user interface, but
it may be displayed in future releases.

priorityClass

[Read/Write] This property sets/returns the priority class number (long) of the
plug-in. The priority class may be either 100 or 200. In general, plug-ins that
change file paths of selected templates should be members of the 100
priority class so they are called first; plug-ins that do not need to change file
paths should be members of the 200 priority class.

priorityIndex

[Read/Write] This property sets/returns the priority index of the plug-in within
its assigned priorityClass. Plug-ins with lower indexes (and lower priority

HotDocs API

208

classes) are called before plug-ins with higher indexes. The priorityIndex may
be any number 1-99.

Plugin.CLSID Property

[Read/Write] This property sets/returns the class ID (CLSID) of the plug-in. The CLSID should be
surrounded by braces ({}). For example, {12345678-1111-2222-AAAA-DDDDDDDDDDDD}.

Syntax

string CLSID [set, get]

Example (Visual C#)

The following Visual C# example displays various properties of each registered plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.PluginsClass plugins = app.Plugins;
 string msg;

 for (int i = 0; i < plugins.Count; i++)
 {
 msg = "CLSID: " + plugins.Item(i).CLSID + "\n\r";
 msg += "Description: " + plugins.Item(i).Description + "\n\r";
 msg += "priorityClass: " + plugins.Item(i).priorityClass +
"\n\r";
 msg += "priorityIndex: " + plugins.Item(i).priorityIndex;
 MessageBox.Show(msg);
 }
 }
}

Plugin.Description Property

[Read/Write] This property sets/returns the description of the plug-in. HotDocs does not currently display
this description in the user interface, but it may be displayed in future releases.

COM API

209

Syntax

string Description [set, get]

Example (Visual C#)

The following Visual C# example displays various properties of each registered plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.PluginsClass plugins = app.Plugins;
 string msg;

 for (int i = 0; i < plugins.Count; i++)
 {
 msg = "CLSID: " + plugins.Item(i).CLSID + "\n\r";
 msg += "Description: " + plugins.Item(i).Description + "\n\r";
 msg += "priorityClass: " + plugins.Item(i).priorityClass +
"\n\r";
 msg += "priorityIndex: " + plugins.Item(i).priorityIndex;
 MessageBox.Show(msg);
 }
 }
}

Plugin.priorityClass Property

[Read/Write] This property sets/returns the priority class number (long) of the plug-in. The priority class
may be either 100 or 200. In general, plug-ins that change file paths of selected templates should be
members of the 100 priority class so they are called first; plug-ins that do not need to change file paths
should be members of the 200 priority class.

Syntax

int priorityClass [set, get]

Example (Visual C#)

The following Visual C# example displays various properties of each registered plugin:

public class ExampleCode
{

HotDocs API

210

 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.PluginsClass plugins = app.Plugins;
 string msg;

 for (int i = 0; i < plugins.Count; i++)
 {
 msg = "CLSID: " + plugins.Item(i).CLSID + "\n\r";
 msg += "Description: " + plugins.Item(i).Description + "\n\r";
 msg += "priorityClass: " + plugins.Item(i).priorityClass +
"\n\r";
 msg += "priorityIndex: " + plugins.Item(i).priorityIndex;
 MessageBox.Show(msg);
 }
 }
}

Plugin.priorityIndex Property

[Read/Write] This property sets/returns the priority index of the plug-in within its assigned priorityClass.
Plug-ins with lower indexes (and lower priority classes) are called before plug-ins with higher indexes. The
priorityIndex may be any number 1-99.

Syntax

int priorityIndex [set, get]

Example (Visual C#)

The following Visual C# example displays various properties of each registered plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.PluginsClass plugins = app.Plugins;
 string msg;

 for (int i = 0; i < plugins.Count; i++)
 {
 msg = "CLSID: " + plugins.Item(i).CLSID + "\n\r";
 msg += "Description: " + plugins.Item(i).Description + "\n\r";
 msg += "priorityClass: " + plugins.Item(i).priorityClass +
"\n\r";
 msg += "priorityIndex: " + plugins.Item(i).priorityIndex;
 MessageBox.Show(msg);

COM API

211

 }
 }
}

HotDocs.PluginsClass Object

HotDocs.PluginsClass Object

This object represents a collection of registered HotDocs plug-ins. It allows an integration to determine
which plug-ins are registered, register new plug-ins, or unregister existing plug-ins.

General Information

ProgID: HotDocs.PluginsClass.11.0
HotDocs.PluginsClass (version-independent)

CLSID: {F90E67E0-4489-4546-AD04-26B9AF7DCA87}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is Plugins.

Name IID Added in

Plugins {6CEA447A-6CA5-446B-9E78-
3EE86B6D44EE}

Added in HotDocs 2005 SP2

Methods

Method Description

Item

This method returns a Plugin object for the registered plug-in specified by the
index parameter.

Register

This method registers the plug-in.

Unregister

This method unregisters a plug-in, removing its CLSID from the HotDocs
registry. Unregistering a plug-in prevents HotDocs from loading the plug-in
during startup.

Properties

Property Description

Count

[Read-only] This property returns the number of registered plug-ins.

HotDocs API

212

PluginsClass.Item Method

This method returns a Plugin object for the registered plug-in specified by the index parameter.

Syntax

HotDocs.Plugin Item (int index)

Parameters Description

index The index of a specific registered plug-in to be returned.

Return Value

A Plugin object for the registered plug-in specified by the index parameter.

Example (Visual C#)

The following Visual C# example displays various properties of each registered plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.PluginsClass plugins = app.Plugins;
 string msg;

 for (int i = 0; i < plugins.Count; i++)
 {
 msg = "CLSID: " + plugins.Item(i).CLSID + "\n\r";
 msg += "Description: " + plugins.Item(i).Description + "\n\r";
 msg += "priorityClass: " + plugins.Item(i).priorityClass +
"\n\r";
 msg += "priorityIndex: " + plugins.Item(i).priorityIndex;
 MessageBox.Show(msg);
 }
 }
}

PluginsClass.Register Method

COM API

213

This method registers the plug-in.

Syntax

void Register (string CLSID, string descriptionStr, int priorityClass, int
priorityIndex)

Parameters Description

CLSID The class ID for the plug-in (e.g., "{12345678-1111-2222-AAAA-
DDDDDDDDDDDD}").

descriptionStr A description for the plug-in.

priorityClass Either 100 or 200. Use 100 if it is going to change the file path; otherwise, use
200. This priority is followed when HotDocs is editing or assembling a
template; if more than one plug-in is registered, this determines the order.

priorityIndex Any number 1-99 to indicate the priority.

Example

The following Visual C# example registers a plug-in:

[ComRegisterFunction]
public static void RegisterPlugin(Type t)
{
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}", "File
Handler", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
}

PluginsClass.Unregister Method

This method unregisters a plug-in, removing its CLSID from the HotDocs registry. Unregistering a plug-in
prevents HotDocs from loading the plug-in during startup.

Syntax

void Unregister (string CLSID)

Parameters Description

CLSID This is the CLSID of the plug-in class to unregister.

HotDocs API

214

Example

The following Visual C# example unregisters a plug-in:

[ComUnregisterFunction]
public static void UnRegisterPlugin(Type t)
{
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
}

PluginsClass.Count Property

[Read-only] This property returns the number of registered plug-ins.

Syntax

int Count [get]

Example (Visual C#)

The following Visual C# example displays various properties of each registered plugin:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();
 HotDocs.PluginsClass plugins = app.Plugins;
 string msg;

 for (int i = 0; i < plugins.Count; i++)
 {
 msg = "CLSID: " + plugins.Item(i).CLSID + "\n\r";
 msg += "Description: " + plugins.Item(i).Description + "\n\r";
 msg += "priorityClass: " + plugins.Item(i).priorityClass +
"\n\r";
 msg += "priorityIndex: " + plugins.Item(i).priorityIndex;
 MessageBox.Show(msg);
 }
 }
}

COM API

215

HotDocs.TemplateInfo Object

HotDocs.TemplateInfo Object

This object lets you gather information about the files on which a given HotDocs template depends. For
example, most templates consist of a template (e.g., .RTF) file, along with a corresponding component file.
If you use shared component files, a template would also depend on that shared component file. Likewise,
INSERT or ASSEMBLE instructions in a template also introduce additional dependencies.

General Information

ProgID: HotDocs.TemplateInfo.11.0
HotDocs.TemplateInfo (version-independent)

CLSID: {DCDABAA3-E17D-4474-954D-E43B1D91F7EB}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is
_TemplateInfo.

Name IID Added in

_TemplateInfo {6579F052-B492-426c-B690-
04FDF3639B83}

Added in HotDocs 10.1

__TemplateInfoEvents {932C7EA1-1BA4-4f51-8B2F-
822866355714}

Added in HotDocs 10.1

Methods

Method Description

Close

This method closes the template.

Open

This method opens a template to inspect its file dependencies. When you are
finished with the template, call Close.

Properties

Property Description

ComponentCollection [Read-only] This property returns the ComponentCollection for the
specified template.

Dependencies

[Read-only] This property returns a DependencyCollection, which is a list of
all dependencies for the template. Unlike the RecursiveDepencencies
property, this property shows only the top-level dependencies for the

HotDocs API

216

template. If you want to get all of the dependencies for each dependency,
you must recurse through each dependency in the collection.

EffectiveComponentFile

[Read-only] This property returns the file path of the "effective"
component file used by the template. For example, if the template uses a
shared component file, this will return the path of the shared file instead
of the template's own component file.

PointedToComponentFile

[Read-only] This property returns the file path of the shared component
file used by the template. If there is no shared component file, it returns
an empty string.

PrimaryComponentFile

[Read-only] This property returns the file name of the template's primary
component file. (In the case of a template that uses a shared component
file, this property is used to get the path of the template's own
component file and not the shared component file path.)

RecursiveDependencies

[Read-only] This property returns a DependencyCollection, which is a
complete, recursive list of all dependencies for the template and its
dependencies. If you just want the top-level list of dependencies without
recursion, use Dependencies instead.

TemplateInfo.Close Method

This method closes the template.

Syntax

void Close ()

TemplateInfo.Open Method

This method opens a template to inspect its file dependencies. When you are finished with the template,
call Close.

Syntax

void Open (string filePath)

Parameters Description

COM API

217

filePath The file path of the template file to open.

TemplateInfo.ComponentCollection Property

[Read-only] This property returns the ComponentCollection for the specified template.

Syntax

HotDocs.ComponentCollection ComponentCollection [get]

TemplateInfo.Dependencies Property

 [Read-only] This property returns a DependencyCollection, which is a list of all dependencies for the
template. Unlike the RecursiveDepencencies property, this property shows only the top-level dependencies
for the template. If you want to get all of the dependencies for each dependency, you must recurse
through each dependency in the collection.

Take care when recursing through a template's dependencies to keep track of which
dependencies have already been inspected. Otherwise, if there is a circular dependency (e.g.,
Template A depends on Template B, which depends on Template A), your recursive function
could enter an endless loop.

Syntax

HotDocs.DependencyCollection Dependencies [get]

TemplateInfo.EffectiveComponentFile Property

[Read-only] This property returns the file path of the "effective" component file used by the template. For
example, if the template uses a shared component file, this will return the path of the shared file instead
of the template's own component file.

Syntax

HotDocs API

218

string EffectiveComponentFile [get]

TemplateInfo.PointedToComponentFile Property

[Read-only] This property returns the file path of the shared component file used by the template. If there
is no shared component file, it returns an empty string.

Syntax

string PointedToComponentFile [get]

TemplateInfo.PrimaryComponentFile Property

[Read-only] This property returns the file name of the template's primary component file. (In the case of a
template that uses a shared component file, this property is used to get the path of the template's own
component file and not the shared component file path.)

Syntax

string PrimaryComponentFile [get]

TemplateInfo.RecursiveDependencies Property

[Read-only] This property returns a DependencyCollection, which is a complete, recursive list of all
dependencies for the template and its dependencies. If you just want the top-level list of dependencies
without recursion, use Dependencies instead.

Syntax

HotDocs.DependencyCollection RecursiveDependencies [get]

HotDocs.VarMap Object

COM API

219

HotDocs.VarMap Object

This object represents a variable mapping object. VarMaps are used to map HotDocs variables in a
template to source names in a data source. The VarMap object represents three collections:

Collection Description

HDVariables A list of HotDocs variables that can be mapped to fields in your data store.
This collection is usually populated by copying the list of variables (and their
types) from a HotDocs component file.

SourceNames A list of fields in your data store.

Mapping A list of mappings between variables and source names (fields) in your data
store. Each item in this collection maps one variable name to one source
name.

The VarMap object also includes some user interface to allow users to assign Mappings between Variables
and SourceNames.

The purpose for mapping is to easily create associations between HotDocs variables and data fields in
your application. HotDocs does not use these associations internally, but provides this mechanism for the
integration to access them. For example, if your application contains a data store with information about
customers, and the user wants to assemble a document using the HotDocs integration with data from
your data store, you need to know how fields in your data store map to the HotDocs variables.

For example, you could hard code variable names into your application. This would work, as long as the
HotDocs templates never changed and every reference field in the data store used that variable name.

An alternate solution would be to use the HotDocs mapping API. Using the mapping API, you can present
a dialog with a list of all the fields in the data store and all the HotDocs variables in the template. Then the
fields in the data store can be mapped to HotDocs variables. VarMap objects can be stored in HotDocs
map (.HMF) files so the mapping only needs to be done once.

Finally, when your application is loading data into an answer collection for assembly, or when HotDocs
queries the application for a value, you can look at the map collection to determine which field in your
data store to use to provide the data element for the variable.

General Information

ProgID: HotDocs.VarMap.11.0
HotDocs.VarMap (version-independent)

CLSID: {4E2481F7-DFB8-4E85-B51F-B12B1D82A377}

The following table shows the name and IID for each interface, as well as the version of HotDocs in which
it was introduced. The primary interface and the main public interface exposed by this object is _VarMap2.

HotDocs API

220

Name IID Added in

_VarMap {28E330B9-BF78-4849-990E-
1B403383E4D4}

Added in HotDocs 6.0

_VarMap2 {28E330BA-BF78-4849-990E-
1B403383E4D4}

Added in HotDocs 2005 SP2

Methods

Method Description

HDVariablesAdd

This method adds a new item to the HDVariables collection. However, it does
not add a new HotDocs variable to the component file—it simply creates a
new item representing a variable.

HDVariablesItem

This method retrieves a variable item from the HDVariables collection. A
HotDocs variable is identified by a name (varname) and type (vartype). The
index parameter is a number which will return the indexth variable from the
collection.

MappingAdd

This method adds a new mapping and associates the variable name
(varName) with the source name (srcName).

MappingAdd2

This method is similar to MappingAdd; it adds a new mapping and associates
the variable name (varname) with the source name (srcname). The difference
is that it also allows you to specify the write-back mode for the mapping
using a value from the HDMappingBackfill enumeration. (See also
MappingAddEx2.)

MappingAddEx2

This method is similar to MappingAdd; it adds a new mapping and associates
the variable name (varName) with the source name (srcName). The difference
is that it also allows you to specify the write-back mode for the mapping
using a value from the HDMappingBackfill enumeration, and variable types
for the variable and source from the HDVARTYPE enumeration. (See also
MappingAdd2.)

MappingItem

This method retrieves the variable name (varname) and source name
(srcname) for a mapping in the collection.

MappingItem2

This method, like MappingItem, retrieves the variable name (varName) and
source name (srcName) for a mapping in the collection. The Index parameter
can either be an index number or the name of a HotDocs variable. It also
allows you to retrieve variable types for the variable and source, and the
current write-back mode for the mapping.

MappingRemove

This method removes a mapping from the Mapping collection.

OpenComponentFile

This method opens a component file and populates the HDVariables
collection with the components from the component file. (Any existing
variables in the HDVariables collection are not erased.)

COM API

221

OpenMapFile

This method opens a HotDocs map file, reads in the mappings, and populates
the collections. Any existing members of the collections will not be erased.

SaveMapFile

This method saves the mappings to the filename file. If a file already exists, it
is overwritten.

ShowUserInterface

This method shows the mapping user interface where users can assign
mappings between HotDocs variables and source names.

SourceNamesAdd

This method adds a new source to the SourceNames collection. (See also
SourceNamesAdd2.)

SourceNamesAdd2

This method adds a new source to the SourceNames collection. It is similar to
SourceNamesAdd, but it accepts a third parameter, backfill, which allows you
to specify the write-back mode for the source.

SourceNamesItem

This method retrieves the source name and source type from the
SourceNames collection. The Index parameter is the index number for a
position in the SourceNames collection. (See also SourceNamesItem2.)

SourceNamesItem2

This method retrieves the source name and source type from the
SourceNames collection. The Index parameter is the index number for a
position in the SourceNames collection. It is similar to SourceNamesItem, but
it accepts a fourth parameter, backfill, which returns the write-back mode for
the source.

SourceNamesRemove

This method removes the Indexth mapping from the SourceNames collection.

Properties

Property Description

Application

[Read-only] This property returns a reference to the Application object.

DefaultBackfill

[Read/Write] This property indicates the default write-back mode for
mapped variables.

HDVariablesCount

[Read-only] This property returns the number of items in the Variables
collection.

MappingCount

[Read-only] This property returns the number of items in the Mappings
collection.

MapTextAndMultipleChoice

[Read/Write] This Boolean property allows variable mapping between
Multiple Choice and Text values. (If it is true, Text values may be
mapped to Multiple Choice values and vice versa.)

ShowBackfillColumn

[Read/Write] This Boolean property is used to hide (false) or show (true)
the "Write Back" column in the mapping interface. This column allows
users to select the write-back mode for each variable mapping.

SourceNamesCount

[Read-only] This property returns the number of items in the
SourceNames collection.

HotDocs API

222

VarMap.HDVariablesAdd Method

This method adds a new item to the HDVariables collection. However, it does not add a new HotDocs
variable to the component file—it simply creates a new item representing a variable.

Syntax

void HDVariablesAdd (string varName, HotDocs.HDVARTYPE varType)

Parameters Description

varName The name of the item.

varType The type of the item. The vartype can be one of the following values, from the
HDVARTYPE enumeration:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

VarMap.HDVariablesItem Method

This method retrieves a variable item from the HDVariables collection. A HotDocs variable is identified by
a name (varname) and type (vartype). The index parameter is a number which will return the indexth
variable from the collection.

Syntax

void HDVariablesItem (int index, out string varName, ref HotDocs.HDVARTYPE varType)

Parameters Description

index A number representing the position of the desired variable in the collection.

varName If the variable is found in the collection, then this will be set to the name of
the variable. If the variable cannot be found, then this will be an empty ("")

COM API

223

string.

varType When the method returns, this parameter will be set to the correct
HDVARTYPE for the variable requested. It may be one of the following values:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

VarMap.MappingAdd Method

This method adds a new mapping and associates the variable name (varName) with the source name
(srcName).

Syntax

void MappingAdd (string varName, string srcName)

Parameters Description

varName The name of the HotDocs variable to map.

srcName The name of the source for the mapping.

VarMap.MappingAdd2 Method

This method is similar to MappingAdd; it adds a new mapping and associates the variable name (varname)
with the source name (srcname). The difference is that it also allows you to specify the write-back mode
for the mapping using a value from the HDMappingBackfill enumeration. (See also MappingAddEx2.)

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void MappingAdd2 (string varName, string srcName, HotDocs.HDMappingBackfill backfill
)

HotDocs API

224

Parameters Description

varName The name of the HotDocs variable to map.

srcName The name of the source for the mapping.

backfill The write-back mode for the mapping.

VarMap.MappingAddEx2 Method

This method is similar to MappingAdd; it adds a new mapping and associates the variable name (varName)
with the source name (srcName). The difference is that it also allows you to specify the write-back mode
for the mapping using a value from the HDMappingBackfill enumeration, and variable types for the
variable and source from the HDVARTYPE enumeration. (See also MappingAdd2.)

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void MappingAddEx2 (string varName, HotDocs.HDVARTYPE varType, string srcName,
HotDocs.HDVARTYPE srcType, HotDocs.HDMappingBackfill backfill)

Parameters Description

varName The name of the HotDocs variable to map.

varType The type of the HotDocs variable to map.

srcName The name of the source for the mapping.

srcType The type of the source for the mapping.

backfill The write-back mode for the mapping.

Return Value

An integer indicating the index of the new Value within the Answer object.

VarMap.MappingItem Method

This method retrieves the variable name (varname) and source name (srcname) for a mapping in the
collection.

COM API

225

Syntax

void MappingItem (object index, out string varName, out string srcName)

Parameters Description

Index The index of the item in the Mapping collection to retrieve. This can either be
a number, which will return the mapping at the Index position in the
collection, or a string, which is interpreted as the name of a HotDocs variable.

varName The name of the HotDocs variable in the mapping.

srcName The name of the source in the mapping.

VarMap.MappingItem2 Method

This method, like MappingItem, retrieves the variable name (varName) and source name (srcName) for a
mapping in the collection. The Index parameter can either be an index number or the name of a HotDocs
variable. It also allows you to retrieve variable types for the variable and source, and the current write-
back mode for the mapping.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void MappingItem2 (object index, out string varName, out HotDocs.HDVARTYPE varType,
out string srcName, out HotDocs.HDVARTYPE srcType, out HotDocs.HDMappingBackfill
backfill)

Parameters Description

index The index of the item in the Mapping collection to retrieve. This can either be
a number, which will return the mapping at the Index position in the
collection, or a string, which is interpreted as the name of a HotDocs variable.

varname The name of the HotDocs variable in the mapping.

varType The variable type for the mapping item.

srcname The name of the source in the mapping.

srcType The source variable type for the mapping item.

backfill The write-back mode for the mapping item.

HotDocs API

226

VarMap.MappingRemove Method

This method removes a mapping from the Mapping collection.

Syntax

void MappingRemove (int index)

Parameters Description

index The position of the desired mapping in the collection.

VarMap.OpenComponentFile Method

This method opens a component file and populates the HDVariables collection with the components from
the component file. (Any existing variables in the HDVariables collection are not erased.)

Syntax

void OpenComponentFile (string componentFileName)

Parameters Description

componentFileName The file path and name of the HotDocs component file (.CMP) to load.

VarMap.OpenMapFile Method

This method opens a HotDocs map file, reads in the mappings, and populates the collections. Any existing
members of the collections will not be erased.

Syntax

void OpenMapFile(string mapFileName)

Parameters Description

mapFileName The path and file name of the HotDocs map file (.HMF) to load.

COM API

227

VarMap.SaveMapFile Method

This method saves the mappings to the filename file. If a file already exists, it is overwritten.

Beginning with HotDocs 2009, map files are saved in an XML file format, which cannot be read
by earlier versions of HotDocs.

Syntax

void SaveMapFile(string mapFileName)

Parameters Description

mapFileName The file name and path of the HotDocs map file (.HMF).

VarMap.ShowUserInterface Method

This method shows the mapping user interface where users can assign mappings between HotDocs
variables and source names.

Syntax

bool ShowUserInterface (bool showImport, bool showLoad, int windowHandle, string
fromString, bool comboBox)

Parameters Description

showImport [optional,defaultvalue(TRUE)] Show the Import button, which allows the user
to an load existing HotDocs map (.HMF) file into the variable map.

showLoad [optional,defaultvalue(TRUE)] Show the Load button, which allows the user to
load components from a component file into the variable map.

windowHandle [optional,defaultvalue(0)] The parent window for the variable map dialog. If
this is non-null, then the variable map dialog is displayed modal to this parent
window.

fromString [optional] String to be displayed in the Map variables in box in the user
interface. If this parameter is not specified, HotDocs will show the file path for
the component file that was loaded.

HotDocs API

228

comboBox [optional,defaultvalue(FALSE)] Indicates whether the controls in the Map to
column of the user interface are combo boxes or list boxes. If they are combo
boxes, the interface will allow the user to add items to the HDVariables
collection from the user interface. If they are list boxes, the user must select
an existing item.

Return Value

Indicates if the user clicked the OK button or the Cancel button. If ok == true, then the user clicked the
OK button.

Example (Visual C#)

The following Visual C# example displays the HotDocs Variable Mapping dialog box:

public class ExampleCode
{
 static void Main()
 {
 HotDocs.VarMap vMap = new HotDocs.VarMap();

 vMap.ShowUserInterface(true, false, vMap.Application.Hwnd, "",
false);
 }
}

VarMap.SourceNamesAdd Method

This method adds a new source to the SourceNames collection. (See also SourceNamesAdd2.)

Syntax

void SourceNamesAdd (string sourceName, HotDocs.HDVARTYPE varType)

Parameters Description

sourceName The name of the source.

varType The variable type for the source. In the user interface, the source will be
selectable only for variables of this type. This parameter must be one of the
following values from the HDVARTYPE enumeration:

• HD_TEXTTYPE

COM API

229

• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

VarMap.SourceNamesAdd2 Method

This method adds a new source to the SourceNames collection. It is similar to SourceNamesAdd, but it
accepts a third parameter, backfill, which allows you to specify the write-back mode for the source.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void SourceNamesAdd2 (string sourceName, HotDocs.HDVARTYPE varType,
HotDocs.HDMappingBackfill backfill)

Parameters Description

sourcename The name of the source.

vartype The variable type for the source. In the user interface, the source will be
selectable only for variables of this type. This parameter must be one of the
following values from the HDVARTYPE enumeration:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

backfill The write-back mode for the source.

VarMap.SourceNamesItem Method

This method retrieves the source name and source type from the SourceNames collection. The Index
parameter is the index number for a position in the SourceNames collection. (See also SourceNamesItem2.)

HotDocs API

230

Syntax

void SourceNamesItem (int index, out string sourceName, out HotDocs.HDVARTYPE
varType)

Parameters Description

Index The index of the item in the SourceNames collection to retrieve.

sourcename The name of the source.

vartype The variable type of the source. In the user interface, the source will be
selectable only for variables of this type. This parameter must be one of the
following values from the HDVARTYPE enumeration:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

VarMap.SourceNamesItem2 Method

This method retrieves the source name and source type from the SourceNames collection. The Index
parameter is the index number for a position in the SourceNames collection. It is similar to
SourceNamesItem, but it accepts a fourth parameter, backfill, which returns the write-back mode for the
source.

This method was introduced with the release of HotDocs 2005 SP2.

Syntax

void SourceNamesItem2 (int index, out string sourceName, out HotDocs.HDVARTYPE
varType, out HotDocs.HDMappingBackfill backfill)

Parameters Description

Index The index of the item in the SourceNames collection to retrieve.

sourceName The name of the source.

varType The variable type of the source. In the user interface, the source will be
selectable only for variables of this type. This parameter must be one of the

COM API

231

following values from the HDVARTYPE enumeration:

• HD_TEXTTYPE
• HD_NUMBERTYPE
• HD_DATETYPE
• HD_TRUEFALSETYPE
• HD_MULTCHOICETYPE

backfill The write-back mode for the source.

VarMap.SourceNamesRemove Method

This method removes the Indexth mapping from the SourceNames collection.

Syntax

void SourceNamesRemove (int index)

Parameters Description

Index The position of the desired sourcename in the collection.

VarMap.Application Property

[Read-only] This property returns a reference to the Application object.

Since there is only one Application object on a machine at a time, this property will return a
reference to the same object as the Application property on any other object in HotDocs, and a
reference to the same object as if you created a new HotDocs.Application object.

Syntax

HotDocs._Application2 Application [get]

HotDocs API

232

VarMap.DefaultBackfill Property

[Read/Write] This property indicates the default write-back mode for mapped variables.

This property was introduced with the release of HotDocs 2005 SP2.

Syntax

HotDocs.HDMappingBackfill DefaultBackfill [set, get]

It can be any value from the HDMappingBackfill enumeration:

• Always
• DoNotAllow
• Never
• Prompt

If the value of this property is DoNotAllow, the write-back mode cannot be changed in the mapping
interface.

VarMap.HDVariablesCount Property

[Read-only] This property returns the number of items in the Variables collection.

Syntax

int HDVariablesCount [get]

VarMap.MappingCount Property

[Read-only] This property returns the number of items in the Mappings collection.

Syntax

int MappingCount [get]

COM API

233

VarMap.MapTextAndMultipleChoice Property

 [Read/Write] This Boolean property allows variable mapping between Multiple Choice and Text values. (If
it is true, Text values may be mapped to Multiple Choice values and vice versa.)

This property was introduced with the release of HotDocs 2005 SP2.

Syntax

 bool MapTextAndMultipleChoice [set, get]

VarMap.ShowBackfillColumn Property

[Read/Write] This Boolean property is used to hide (false) or show (true) the "Write Back" column in the
mapping interface. This column allows users to select the write-back mode for each variable mapping.

This property was introduced with the release of HotDocs 2005 SP2.

Syntax

bool ShowBackfillColumn [set, get]

VarMap.SourceNamesCount Property

[Read-only] This property returns the number of items in the SourceNames collection.

Syntax

int SourceNamesCount [get]

235

Answer Source API

About the HotDocs Answer Source API

What is an answer source integration?

When completing a HotDocs interview to produce a custom document, HotDocs users typically enter their
answers by typing them directly at the answer-gathering dialog. Those answers are then merged into the
assembled document.

In some situations, however, the data the user needs to enter is stored in a separate application. Rather
than requiring the user to manually look up the answers in the third-party application and then re-enter
the data in HotDocs, an integration between the two products can be created that allows the user to click
a button on a HotDocs dialog and have immediate access to data stored by the third-party.

For example, an integration between HotDocs and Microsoft Outlook allows users to click a button in a
HotDocs dialog and have the Contacts list in Outlook open. The user then double-clicks on a given
contact and the data about that person is automatically merged into the answer fields of the dialog.

Answer Source Integration Example

To start, it may help to understand how an answer source integration looks and works to both an end user
and a developer. In the following example, a DLL has been created that links a dialog to the Microsoft
Outlook Contacts list.

As a user completes a HotDocs interview, dialogs which have answer source integrations appear with a
Select button on them.

HotDocs API

236

When users click the Select button, the answer source DLL opens Outlook and displays the Contacts list in
a modal dialog box.

Answer Source API

237

The user then double-clicks a contact in the list and the data associated with the record is merged into
the HotDocs dialog.

HotDocs API

238

From the perspective of a HotDocs template developer, the steps required to "hook" the answer source
integration to a given dialog is simple. In HotDocs Developer, a template developer creates a dialog and
adds the variables to the dialog whose values will come from the third-party application.

Answer Source API

239

Once the dialog is created and the variables have been added, the template developer then chooses the
answer source DLL at the Options tab of the Dialog Editor.

HotDocs API

240

Once the answer source is selected, the template developer then maps (or associates) variables in the
dialog to fields in the answer source (in this case, to fields in the Contacts list).

Answer Source API

241

Once the variables are mapped to the fields, the answer source integration is complete.

How do I create an answer source integration?

To create an answer source integration

1. Create an answer source DLL.

An answer source is a standard Microsoft Windows 32-bit Dynamic Link Library (DLL) that provides
a link from HotDocs to the source application through a defined API that the answer source DLL
implements. This API consists of a number of functions that HotDocs uses to communicate with the
source application. The answer source DLL can be written using any language which supports the
creation of standard Windows DLL files.

If you use Visual Basic, you must use a third-party tool to create the DLL because Visual
Basic can only create an ActiveX DLL.

The answer source DLL allows HotDocs to query the application for the data it needs to populate
the fields of a HotDocs dialog when asked. For this to work, the following must be true:

• HotDocs must be able to determine if the answer source is installed correctly and if it is ready to
be called. (See IsAvailable.)

HotDocs API

242

• HotDocs must be able to retrieve a list of names and types of all available fields in the answer
source. This information will be used when mapping variables to the fields in the answer source.
(See GetFieldNameW and GetFieldName.)

• HotDocs assumes the data source contains records which can be uniquely identified by a 32-bit
integer.

• The answer source must display (or cause to be displayed) some user interface whereby users can
browse or search the data in the application and select a record. The answer source must then
return to HotDocs the 32-bit ID of the selected record. (See ChooseRecord and
ChooseMultipleRecords.)

• After the user chooses a specific record, HotDocs must be able to use the 32-bit record ID to
request data for specific fields of that record. (See GetFieldW and GetField.)

To facilitate the interaction described above, and to allow the DLL to be successfully loaded and
used by HotDocs, every answer source DLL must expose and implement the following four
functions, or entry points: IsAvailable, GetFieldNameW (or GetFieldName), ChooseRecord, and
GetFieldW (or GetField).

Your answer source DLL must export these functions by name, without any C++ name
mangling; that is, they must be exported as standard C language functions. Also, they
should be declared to use the WINAPI calling convention (__stdcall in Visual C++).

2. Register the answer source DLL.

Once the answer source DLL has been created, it must be saved in the HotDocs program files
folder (for example, C:\Program Files\HotDocs). In addition, you must create a registry entry that
allows HotDocs to recognize the DLL and display it at the Dialog Editor. This registry entry is also
used during an interview when the user attempts to access the answer source.

To create the registry key, navigate to HKEY_LOCAL_MACHINE > SOFTWARE > HotDocs >
HotDocs > Answer Sources. (You may need to create the Answer Sources key.) Then create a new
string value in this key using an easily identifiable name for the answer source. (This name is what
appears in the Answer source drop-down list at the Dialog Editor.) The value should be the file
name and extension of the answer source DLL.

Once this answer source DLL is created, registered, and saved to the HotDocs program folder (for
example, C:\Program Files\HotDocs), HotDocs will call this DLL to obtain the information it needs
from the application.

3. Map HotDocs variables to answer source fields.

In this step, you must associate the answer source with dialogs in your HotDocs templates. This is
done by specifying an answer source at the Options tab of the Dialog Editor. Once the answer
source is selected, the template developer must then map (associate) variables in the dialog to
fields in the answer source.

When matching fields in the answer source to variables in HotDocs, it helps to understand that
HotDocs recognizes five basic data types: text, number, date, Boolean, and multiple choice. Any

Answer Source API

243

fields in the application that you wish to allow users to map to HotDocs variables should be
associated with one of these types. Each type has an integer equivalent that is used in calls to the
answer source DLL. These integers, as well as other specific information about each HotDocs data
type, is listed here:

HotDocs Data
Type

Integer
Equivalent

Notes

TEXT 1 Text values in HotDocs are 8-bit strings (Windows-1252 or Latin-1
encoding) up to a maximum length of 15,000 bytes.

NUMBER 2 Number values are passed to HotDocs as strings. Numbers are
always interpreted in base 10. Both decimal and integer values are
accepted.

DATE 3 Date values are passed to HotDocs as strings. Dates should be
formatted in an unambiguous manner when passed to HotDocs,
for example, as YYYY-MM-DD. HotDocs does not currently
support time values.

TRUE/FALSE 5 True/False (Boolean) values are passed into HotDocs as strings. To
pass a true value in, the string should contain the word TRUE. To
pass a false value in, the string should contain the word FALSE.

MULTIPLE
CHOICE

6 Multiple choice values can be passed into HotDocs two ways—as
single-select values or as multiple-select values. Single-select
values are passed as simple strings. Multiple-select values are
passed as delimited strings, with multiple answers delimited by the
vertical bar (|). For example, "Value1|Value2|Value3" would pass
three values to HotDocs.

In earlier versions, you could use the string <^> to delimit options.
While this delimiter still works, you are encouraged to use the
vertical bar instead.

UNANSWERED

 If the answer source returns an empty string when HotDocs
requests a value, HotDocs will not change the current answer.
Answer source DLLs can cause HotDocs to clear an existing answer
by passing a special string token to HotDocs:
<^UNANSWERED^>.

Once the answer source is specified and the variables are mapped, HotDocs displays a Select button in
the answer-gathering dialog for these questions. When the user clicks Select, HotDocs displays a modal
dialog box with the available records from your application. When the user selects a record, the
information in the record is automatically merged into the corresponding answer files in the dialog.

HotDocs Answer Source API

HotDocs API

244

HotDocs Answer Source API

Every answer source DLL must expose and implement the following four entry points: IsAvailable,
GetFieldName, ChooseRecord, and GetField. In addition to the required entry points, HotDocs 2005 SP2
introduced eight additional entry points to facilitate multiple record selection and two-way
communication between HotDocs and the answer source. (For example, these entry points allow HotDocs
to write answers back to the answer source if they are changed during the interview.)

Your answer source DLL must export these functions by name, without any C++ name
mangling; that is, they must be exported as standard C language functions. Also, they should be
declared to use the WINAPI calling convention (__stdcall in Visual C++).

Answer Source DLL Entry Points (Functions)

Function Description

BeginUpdateBatch

This function is called to signify the beginning of a batch of updates.

ChooseMultipleRecords

This function is called during assembly when the end user clicks the Select
button on a Spreadsheet dialog. The implementation of this entry point
should display (or cause to be displayed) a modal dialog box where the user
can browse, search, filter, or otherwise review information made available by
the answer source application. When the user chooses one or more records
containing the data, the implementation should close the modal dialog box
and return the number of records selected.

ChooseRecord

This function is called during assembly when the end user clicks the Select
button on a Regular or Repeated Series dialog. The implementation of this
entry point should display (or cause to be displayed) a modal dialog box
where the user can browse, search, filter, or otherwise review information
made available by the answer source application. When the user chooses a
single record containing the data, the implementation should close the
modal dialog box and return a 32-bit integer identifier that HotDocs will use
later (in calls to GetField or GetFieldW).

CloseRecord

This function is called by HotDocs to indicate that access to the specified
record is no longer needed.

CommitUpdates

This function is called by HotDocs to commit (save) any changes that have
been made to fields in the specified record. For example, if a user selects a
record and then changes the answers that came from that record, this
function is called to update fields in the original record with changed
answers.

EndUpdateBatch

This function is called to signify the ending of a batch of updates. At this
point, HotDocs writes answers back to the database as necessary.

GetChosenRecords

This function is called if ChooseMultipleRecords returns a value greater than

Answer Source API

245

zero. It fills the recordIDs array with the record identifiers of the selected
records in the order in which they are to appear within HotDocs. The records
associated with these identifiers are assumed to be in an open state ready
for read-only access.

GetField

This function is called shortly after execution returns from the ChooseRecord
entry point if the Unicode version of this function (GetFieldW) is not defined.
It is called a number of times to retrieve the data from the individual fields
of the selected record in the answer source application.

GetFieldW

This function is called shortly after execution returns from the ChooseRecord
entry point. It is called a number of times to retrieve the data from the
individual fields of the selected record in the answer source application.

GetFieldAccess

This function is called by HotDocs to determine what type of access is
allowed for a field in the answer source, and only if the Unicode version of
this function (GetFieldAccessW) is not defined. Access may be read-only, or
read/write, meaning answers can be written back to the original record if
they are changed during the interview.

GetFieldAccessW

This function is called by HotDocs to determine what type of access is
allowed for a field in the answer source. Access may be read-only, or
read/write, meaning answers can be written back to the original record if
they are changed during the interview.

GetFieldName

This function is used by HotDocs to enumerate the names and data types of
all the available fields in the answer source application if the Unicode
version of this function (GetFieldNameW) is not defined. GetFieldName is
called repeatedly when a template developer attempts to map variables in a
dialog to fields in the answer source, in order to retrieve the list of possible
fields for mapping. HotDocs passes 0 in fieldNum the first time it calls
GetFieldName (i.e., when it requests the first field name), and increments the
number with each successive call. The implementation should set the field
name and return the data type of the field.

GetFieldNameW

This function is used by HotDocs to enumerate the names and data types of
all the available fields in the answer source application. GetFieldNameW is
called repeatedly when a template developer attempts to map variables in a
dialog to fields in the answer source, in order to retrieve the list of possible
fields for mapping. HotDocs passes 0 in fieldNum the first time it calls
GetFieldNameW (i.e., when it requests the first field name), and increments
the number with each successive call. The implementation should set the
field name and return the data type of the field.

IsAvailable

This function is called by HotDocs to determine whether the answer source
DLL has initialized itself properly, is in communication with the answer
source application, and is ready to be used. It is called each time HotDocs
loads the answer source DLL.

OpenRecord

This function is called by HotDocs to open the specified record in
preparation for accessing it. The answer source should prepare the record

HotDocs API

246

for the type of access requested by the mode.

SetField

This function is called by HotDocs (if the Unicode version of this function,
SetFieldW, is not defined) to set a new value for a particular field of a
specified record in the answer source.

SetFieldW

This function is called by HotDocs to set a new value for a particular field of
a specified record in the answer source.

SupportsBackfill

This function is called by HotDocs to determine if the answer source
supports back-filling of modified field values. If HD_FAILURE (0) is returned
then HotDocs will not call GetFieldAccess or GetFieldAccessW for each field
and will not allow any values modified in HotDocs to be written back to the
answer source (back-filled).

BeginUpdateBatch Function

This function is called to signify the beginning of a batch of updates.

This function was introduced with the release of HotDocs 2006. Earlier versions of HotDocs will
not call this function.

Syntax

void BeginUpdateBatch ()

Example (Visual C++)

The following Visual C++ example displays a MessageBox when the BeginUpdateBatch function is called:

void WINAPI BeginUpdateBatch()

{

 MessageBox(NULL, "Click OK to continue.", "BeginUpdateBatch", MB_OK);

}

ChooseMultipleRecords Function

Answer Source API

247

This function is called during assembly when the end user clicks the Select button on a Spreadsheet
dialog. The implementation of this entry point should display (or cause to be displayed) a modal dialog
box where the user can browse, search, filter, or otherwise review information made available by the
answer source application. When the user chooses one or more records containing the data, the
implementation should close the modal dialog box and return the number of records selected.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function. On Regular and Repeated Series dialogs, the ChooseRecord function
is called instead of ChooseMultipleRecords.

Syntax

long ChooseMultipleRecords ()

Return Value

Return the number of records selected. (If the user cancels the dialog without selecting records, the
function should return zero (0).) This value is used to calculate the size of the buffer passed to
GetChosenRecords.

Example (Visual C++)

The following Visual C++ example displays a MessageBox where the user can choose to either select two
(2) or zero (0) records:

long WINAPI ChooseMultipleRecords()

{

 long nResult = MessageBox(NULL, "Do you want to choose two records? If you
click no, you will be choosing zero records.", "ChooseMultipleRecords",
MB_YESNO);

 if (nResult == IDYES)

 return 2;

 else

 return 0;

}

ChooseRecord Function

HotDocs API

248

This function is called during assembly when the end user clicks the Select button on a Regular or
Repeated Series dialog. The implementation of this entry point should display (or cause to be displayed) a
modal dialog box where the user can browse, search, filter, or otherwise review information made
available by the answer source application. When the user chooses a single record containing the data,
the implementation should close the modal dialog box and return a 32-bit integer identifier that HotDocs
will use later (in calls to GetField or GetFieldW) to fetch the associated data.

On Spreadsheet dialogs, the ChooseMultipleRecords function is called instead of ChooseRecord.

Syntax

long ChooseRecord ()

Return Value

This function should return the 32-bit record number if a record was selected by the user. If a record was
not selected, or if the user cancels the record selection, it should return zero (0).

HotDocs assumes that all record IDs returned by an answer source are greater than or equal to
zero. That is, negative record IDs are not allowed.

Example (Visual C++)

The following Visual C++ example displays a MessageBox where the user can choose to either select
record #129 or not.

long WINAPI ChooseRecord()

{

 long nResult = MessageBox(NULL, "Do you want to select record #129?",
"ChooseRecord", MB_YESNO);

 if (nResult == IDYES)

 return 129;

 else

 return 0;

}

CloseRecord Function

Answer Source API

249

This function is called by HotDocs to indicate that access to the specified record is no longer needed.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function.

Syntax

long CloseRecord (long lRecordID)

Parameters Description

lRecordID The record identifier (key) of the record to close.

HotDocs assumes that all record IDs returned by an answer source are greater
than or equal to zero. That is, negative record IDs are not allowed.

Return Value

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

CommitUpdates Function

This function is called by HotDocs to commit (save) any changes that have been made to fields in the
specified record. For example, if a user selects a record and then changes the answers that came from that
record, this function is called to update fields in the original record with changed answers.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function.

Syntax

long CommitUpdates (long lRecordID)

Parameters Description

lRecordID The record identifier (key) for the record to be committed to storage. The
record identified by this ID will be in an opened state ready for read/write
access.

HotDocs assumes that all record IDs returned by an answer source are greater
than or equal to zero. That is, negative record IDs are not allowed.

Return Value

HotDocs API

250

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

EndUpdateBatch Function

This function is called to signify the ending of a batch of updates. At this point, HotDocs writes answers
back to the database as necessary.

This function was introduced with the release of HotDocs 2006. Earlier versions of HotDocs will
not call this function.

Syntax

void EndUpdateBatch ()

GetChosenRecords Function

This function is called if ChooseMultipleRecords returns a value greater than zero. It fills the recordIDs array
with the record identifiers of the selected records in the order in which they are to appear within HotDocs.
The records associated with these identifiers are assumed to be in an open state ready for read-only
access.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function.

Syntax

long GetChosenRecords (long* recordIDs)

Parameters Description

recordIDs An array of long values allocated and passed in by the caller (HotDocs)
guaranteed to be sizeof(long)*NumSelRecs where NumSelRecs is the value
returned by the previous call to ChooseMultipleRecords.

HotDocs assumes that all record IDs returned by an answer source are greater
than or equal to zero. That is, negative record IDs are not allowed.

Return Value

Answer Source API

251

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

GetField Function

This function is called shortly after execution returns from the ChooseRecord entry point if the Unicode
version of this function (GetFieldW) is not defined. It is called a number of times to retrieve the data from
the individual fields of the selected record in the answer source application.

If you need HotDocs to pass a Unicode string to this function, use GetFieldW.

Syntax

long GetField (long key, LPCSTR fieldName, long typeID, LPSTR data, long maxLen)

Parameters Description

key The record key returned by ChooseRecord.

fieldName The name of the field whose value is requested.

typeID The variable type of the field whose value is requested. (See HotDocs Data
Types.)

data A buffer to contain the field value, as an 8-bit string with Windows-1252
encoding. Pass the string <^UNANSWERED^> to indicate that the field
should be set to unanswered in HotDocs. If you pass an empty string,
HotDocs will not change the current answer for that variable.

maxLen The maximum size (in bytes) of the data buffer.

Return Value

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

Example (Visual C++)

The following Visual C++ example returns a field value.

long WINAPI GetField(long key, LPCSTR fieldName, long typeID, LPSTR data, long
maxLen)

{

 if (key == 129)

 {

HotDocs API

252

 if (_stricmp(fieldName, "First Name") == 0)

 {

 strncpy_s(data, maxLen, "Greg", maxLen);

 data[maxLen-1] = '\0';

 return HD_SUCCESS;

 }

 else if (_stricmp(fieldName, "Last Name") == 0)

 {

 strncpy_s(data, maxLen, "Jones", maxLen);

 data[maxLen-1] = '\0';

 return HD_SUCCESS;

 }

 }

 return HD_FAILURE;

}

GetFieldW Function

This function is called shortly after execution returns from the ChooseRecord entry point. It is called a
number of times to retrieve the data from the individual fields of the selected record in the answer source
application.

This function was introduced with the release of HotDocs 2009 to support Unicode strings.
Earlier versions of HotDocs will not call this function.

Syntax

long GetField (long key, LPCWSTR fieldName, long typeID, LPCWSTR data, long maxLen)

Parameters Description

Answer Source API

253

key The record key returned by ChooseRecord.

fieldName The name of the field whose value is requested.

typeID The variable type of the field whose value is requested. (See HotDocs Data
Types.)

data A buffer to contain the field value, as an 8-bit Unicode string. Pass the string
<^UNANSWERED^> to indicate that the field should be set to unanswered
in HotDocs. If you pass an empty string, HotDocs will not change the current
answer for that variable.

maxLen The maximum size (in bytes) of the data buffer.

Return Value

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

Example (Visual C++)

The following Visual C++ example returns a field value.

long WINAPI GetFieldW(long key, LPCWSTR fieldName, long typeID, LPWSTR data,
long maxLen)

{

 if (key == 129)

 {

 if (_wcsicmp(fieldName, L"First Name") == 0)

 {

 wcsncpy_s(data, maxLen, L"Greg", maxLen);

 data[maxLen-1] = '\0';

 return HD_SUCCESS;

 }

 else if (_wcsicmp(fieldName, L"Last Name") == 0)

 {

 wcsncpy_s(data, maxLen, L"Jones", maxLen);

 data[maxLen-1] = '\0';

HotDocs API

254

 return HD_SUCCESS;

 }

 }

 return HD_FAILURE;

}

GetFieldAccess Function

This function is called by HotDocs to determine what type of access is allowed for a field in the answer
source, and only if the Unicode version of this function (GetFieldAccessW) is not defined. Access may be
read-only, or read/write, meaning answers can be written back to the original record if they are changed
during the interview.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function. If you need HotDocs to pass a Unicode string to this function, use
GetFieldAccessW.

Syntax

long GetFieldAccess (LPCSTR szFieldName)

Parameters Description

szFieldName The name of the field that is to have its value retrieved.

Return Value

Return HD_READONLY (0) if only read access is allowed, or HD_READWRITE (1) if both read and write
(back-fill) access is allowed.

Example (Visual C++)

The following Visual C++ example returns asks if read/write access is allowed:

long WINAPI GetFieldAccess(LPCWSTR szFieldName)

{

 if (MessageBox(NULL, "Is read/write supported?", "GetFieldAccess", MB_YESNO)
== IDYES)

Answer Source API

255

 return HD_READWRITE;

 else

 return HD_READONLY;

}

GetFieldAccessW Function

This function is called by HotDocs to determine what type of access is allowed for a field in the answer
source. Access may be read-only, or read/write, meaning answers can be written back to the original
record if they are changed during the interview.

This function was introduced with the release of HotDocs 2009 to support Unicode strings.
Earlier versions of HotDocs will not call this function.

Syntax

long GetFieldAccessW (LPCWSTR szFieldName)

Parameters Description

szFieldName The name of the field that is to have its value retrieved.

Return Value

Return HD_READONLY (0) if only read access is allowed, or HD_READWRITE (1) if both read and write
(back-fill) access is allowed.

Example (Visual C++)

The following Visual C++ example returns asks if read/write access is allowed:

long WINAPI GetFieldAccessW(LPCWSTR szFieldName)

{

 if (MessageBox(NULL, "Is read/write supported?", "GetFieldAccessW", MB_YESNO)
== IDYES)

 return HD_READWRITE;

 else

HotDocs API

256

 return HD_READONLY;

}

GetFieldName Function

This function is used by HotDocs to enumerate the names and data types of all the available fields in the
answer source application if the Unicode version of this function (GetFieldNameW) is not defined.
GetFieldName is called repeatedly when a template developer attempts to map variables in a dialog to
fields in the answer source, in order to retrieve the list of possible fields for mapping. HotDocs passes 0 in
fieldNum the first time it calls GetFieldName (i.e., when it requests the first field name), and increments the
number with each successive call. The implementation should set the field name and return the data type
of the field.

If you need HotDocs to pass a Unicode string to this function, use GetFieldNameW.

Syntax

long GetFieldName (LPSTR fieldName, long fieldNum)

Parameters Description

fieldName The buffer for the field name. It can hold up to a maximum of 50 characters
plus a NULL terminator.

fieldNum The number of the requested field name.

Return Value

Return the data type of the field (see HotDocs Data Types for a list of data types), or zero (0) to indicate
there are no more fields to enumerate.

Example (Visual C++)

The following Visual C++ example uses GetFieldName:

long WINAPI GetFieldName(LPSTR fieldName, long fieldNum)

{

 long maxLen = 50;

 if (fieldNum == 0)

 {

Answer Source API

257

 strcpy_s(fieldName, maxLen, "First Name");

 return 1;

 }

 else if (fieldNum == 1)

 {

 strcpy_s(fieldName, maxLen, "Last Name");

 return 1;

 }

 else

 return 0;

}

GetFieldNameW Function

This function is used by HotDocs to enumerate the names and data types of all the available fields in the
answer source application. GetFieldNameW is called repeatedly when a template developer attempts to
map variables in a dialog to fields in the answer source, in order to retrieve the list of possible fields for
mapping. HotDocs passes 0 in fieldNum the first time it calls GetFieldNameW (i.e., when it requests the
first field name), and increments the number with each successive call. The implementation should set the
field name and return the data type of the field.

This function was introduced with the release of HotDocs 2009 to support Unicode strings.
Earlier versions of HotDocs will not call this function.

Syntax

long GetFieldNameW (LPCWSTR fieldName, long fieldNum)

Parameters Description

fieldName The buffer for the field name. It can hold up to a maximum of 50 characters
plus a NULL terminator.

fieldNum The number of the requested field name.

HotDocs API

258

Return Value

Return the data type of the field (see HotDocs Data Types for a list of data types), or zero (0) to indicate
there are no more fields to enumerate.

Example (Visual C++)

The following Visual C++ example uses GetFieldNameW:

long WINAPI GetFieldNameW(LPWSTR fieldName, long fieldNum)

{

 long maxLen = 50;

 if (fieldNum == 0)

 {

 wcscpy_s(fieldName, maxLen, L"First Name");

 return 1;

 }

 else if (fieldNum == 1)

 {

 wcscpy_s(fieldName, maxLen, L"Lastګ Name");

 return 1;

 }

 else

 return 0;

}

IsAvailable Function

Answer Source API

259

This function is called by HotDocs to determine whether the answer source DLL has initialized itself
properly, is in communication with the answer source application, and is ready to be used. It is called each
time HotDocs loads the answer source DLL.

Syntax

long IsAvailable ()

Return Value

Return HD_SUCCESS (1) if the answer source was able to initialize itself properly and communicate with
the answer source application. Otherwise, return HD_FAILURE (0).

Example (Visual C++)

The following Visual C++ example displays a Message Box to indicate whether or not the answer source is
initialized properly. In your application, you would typically query a database or perform some other
check to see if it is working properly.

long WINAPI IsAvailable()

{

 if (MessageBox(NULL, "Is the answer source available?", "Sample Answer
Source", MB_YESNO) == IDYES)

 return HD_SUCCESS;

 else

 return HD_FAILURE;

}

OpenRecord Function

This function is called by HotDocs to open the specified record in preparation for accessing it. The answer
source should prepare the record for the type of access requested by the mode.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function.

Syntax

HotDocs API

260

long OpenRecord (long recordID, long mode)

Parameters Description

recordID The record identifier (key) of the record to open.

HotDocs assumes that all record IDs returned by an answer source are greater
than or equal to zero. That is, negative record IDs are not allowed.

mode The type of access requested for the opened record. HD_READONLY (0) for
read-only access (GetField calls) or HD_READWRITE (1) for read/write access
(SetField calls).

Return Value

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

Example (Visual C++)

The following Visual C++ example returns HD_SUCCESS:

long WINAPI OpenRecord(long recordID, long mode)

{

 MessageBox(NULL, "Click OK to continue.", "OpenRecord", MB_OK);

 return HD_SUCCESS;

}

SetField Function

This function is called by HotDocs (if the Unicode version of this function, SetFieldW, is not defined) to set
a new value for a particular field of a specified record in the answer source.

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function. If you need HotDocs to pass a Unicode string to this function, use
SetFieldW.

Syntax

long SetField (long recordID, LPCSTR fieldName, long typeID, LPCSTR value)

Answer Source API

261

Parameters Description

recordID The record identifier (key) for the record whose field is to be set. This
recordID will be in an opened state ready for read/write access.

HotDocs assumes that all record IDs returned by an answer source are greater
than or equal to zero. That is, negative record IDs are not allowed.

fieldName The name of the field that is to have its value set.

typeID The variable type of the field whose value is being set.

value The new value to be stored in the field. This string will be formatted as follows
for each variable type:

• TEXT: As is, no special formatting.
• NUMBER: A valid number containing only digits and optionally a

decimal point and negative sign.
• DATE: YYYY-MM-DD
• TRUE/FALSE: “TRUE” or “FALSE”
• MULTIPLE CHOICE: CHOICE1|CHOICE2…|CHOICEn

If the value in HotDocs is unanswered, HotDocs will pass the following string:
^UNANSWERED^. This value should be treated logically like a database
NULL value (no value exists).

Return Value

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

Example (Visual C++)

The following Visual C++ example returns HD_SUCCESS:

long WINAPI SetField(long recordID, LPCSTR szFieldName, long typeID, LPCSTR
value)

{

 return HD_SUCCESS;

}

SetFieldW Function

HotDocs API

262

This function is called by HotDocs to set a new value for a particular field of a specified record in the
answer source.

This function was introduced with the release of HotDocs 2009 to support Unicode strings.
Earlier versions of HotDocs will not call this function.

Syntax

long SetField (long recordID, LPCWSTR fieldName, long typeID, LPCWSTR value)

Parameters Description

recordID The record identifier (key) for the record whose field is to be set. This
recordID will be in an opened state ready for read/write access.

HotDocs assumes that all record IDs returned by an answer source are greater
than or equal to zero. That is, negative record IDs are not allowed.

fieldName The name of the field that is to have its value set.

typeID The variable type of the field whose value is being set.

value The new value to be stored in the field. This string will be formatted as follows
for each variable type:

• TEXT: As is, no special formatting.
• NUMBER: A valid number containing only digits and optionally a

decimal point and negative sign.
• DATE: YYYY-MM-DD
• TRUE/FALSE: “TRUE” or “FALSE”
• MULTIPLE CHOICE: CHOICE1|CHOICE2…|CHOICEn

If the value in HotDocs is unanswered, HotDocs will pass the following string:
^UNANSWERED^. This value should be treated logically like a database
NULL value (no value exists).

Return Value

Return HD_SUCCESS (1) if successful, and HD_FAILURE (0) if otherwise.

Example (Visual C++)

The following Visual C++ example returns HD_SUCCESS:

long WINAPI SetFieldW(long recordID, LPCWSTR szFieldName, long typeID, LPCWSTR
value)

{

Answer Source API

263

 return HD_SUCCESS;

}

SupportsBackfill Function

This function is called by HotDocs to determine if the answer source supports back-filling of modified
field values. If HD_FAILURE (0) is returned then HotDocs will not call GetFieldAccess or GetFieldAccessW
for each field and will not allow any values modified in HotDocs to be written back to the answer source
(back-filled).

This function was introduced with the release of HotDocs 2005 SP2. Earlier versions of HotDocs
will not call this function.

Syntax

long SupportsBackfill ()

Return Value

Return HD_SUCCESS (1) if back-filling is supported, and HD_FAILURE (0) if otherwise.

Example (Visual C++)

The following Visual C++ example returns HD_SUCCESS to indicate that the answer source supports back-
filling:

long WINAPI SupportsBackfill()

{

 return HD_SUCCESS;

}

265

Plug-in API

About the HotDocs Plug-in API

What is a HotDocs plug-in?

A HotDocs plug-in allows you to extend the HotDocs user interface by adding or customizing options
available at the HotDocs library window. For example, you can:

• Create a plug-in to add a menu to the HotDocs library window that contains commands specific
to your integration.

• Add items to shortcut menus accessed when users right-click items in the library.
• Change the way HotDocs commands like Assemble work with specific types of files.
• Add an overlay image to icons displayed for items in the library.

HotDocs plug-ins are usually in-process COM components (DLLs) written in any COM-capable language,
although they can also be implemented as out-of-process executable files. Plug-ins that implement the
ILibraryWindowIconProvider interface, however, must be in-process DLLs.

When a user launches HotDocs, HotDocs checks for registered plug-ins and creates an instance of the
COM object for each plug-in it finds. If the object is created successfully, HotDocs adds additional menus
and shortcut menus to the library window, registers file name extensions to be handled by the plug-in, or
changes the library item icons, as determined by the plug-in.

HotDocs Plug-in Interfaces

You can implement one or more of the following interfaces in your plug-in:

Interface Description

ILibraryWindowContextMenuExtension
This interface lets you create a plug-in that adds a shortcut
(context) menu to the HotDocs library window. When users
right-click an item in the library, your plug-in can add commands
to the shortcut menu. Specifically, this interface lets you add
your own submenu to the existing shortcut menu.

ILibraryWindowFileHandlerExtension This interface lets you create a plug-in that specifies how
HotDocs handles certain types of files when they are edited or
assembled from the library window. For example, you can
change what happens when a user selects an .RTF template in
the library and clicks the Edit button. In this case, the plug-in
could first locate the template in a document management
system, check it out, and open it in the word processor for
editing.

HotDocs API

266

ILibraryWindowIconProvider This interface lets you create a plug-in that changes the icons
displayed next to items in the HotDocs library. Specifically, it
allows you to place an "overlay" icon on top of the existing icons.
For example, if you want to create a version control plug-in, you
could use overlay status icons to indicate which templates are
checked in, checked out, or not under version control.

ILibraryWindowMenuExtension This interface lets you create a plug-in that adds a menu to the
library window menu bar. For example, you can add a menu
containing commands specific to your integration with HotDocs.

IOutputPlugin This interface enables you to create an output plug-in. Once you
have created the plugin, when you are assembling a document,
you can see the plug-in by selecting File > Send Document
To... The plug-in also adds a new End of Interview output
option. This interface lets you write your own output plug-in
integration with HotDocs.

IPluginPreferences This interface lets you create preferences to be used with any
plug-ins that integrate with HotDocs.

How do I create a HotDocs plug-in?

You can create a HotDocs plug-in to extend, or customize, the HotDocs user interface to meet the needs
of your integration. There are several steps to creating and registering a HotDocs plug-in:

1. Create a DLL that implements one or more of the HotDocs plug-in interfaces:

Interface Description

ILibraryWindowContextMenuExtension
This interface lets you create a plug-in that adds a shortcut
(context) menu to the HotDocs library window. When users
right-click an item in the library, your plug-in can add commands
to the shortcut menu. Specifically, this interface lets you add
your own submenu to the existing shortcut menu.

ILibraryWindowFileHandlerExtension This interface lets you create a plug-in that specifies how
HotDocs handles certain types of files when they are edited or
assembled from the library window. For example, you can
change what happens when a user selects an .RTF template in
the library and clicks the Edit button. In this case, the plug-in
could first locate the template in a document management
system, check it out, and open it in the word processor for
editing.

ILibraryWindowIconProvider This interface lets you create a plug-in that changes the icons

Plug-in API

267

displayed next to items in the HotDocs library. Specifically, it
allows you to place an "overlay" icon on top of the existing icons.
For example, if you want to create a version control plug-in, you
could use overlay status icons to indicate which templates are
checked in, checked out, or not under version control.

ILibraryWindowMenuExtension This interface lets you create a plug-in that adds a menu to the
library window menu bar. For example, you can add a menu
containing commands specific to your integration with HotDocs.

IOutputPlugin This interface enables you to create an output plug-in. Once you
have created the plugin, when you are assembling a document,
you can see the plug-in by selecting File > Send Document
To... The plug-in also adds a new End of Interview output
option. This interface lets you write your own output plug-in
integration with HotDocs.

IPluginPreferences This interface lets you create preferences to be used with any
plug-ins that integrate with HotDocs.

2. Register the DLL with the operating system (e.g., RegAsm.exe).
3. Register the DLL with HotDocs by passing its CLSID to the PluginsClass.Register method.

Click the following link to learn how to create and register a HotDocs plug-in using your desired
programming language:

• Create a HotDocs plug-in using Visual C#

How do I create a HotDocs plug-in using Visual C#?

To create a HotDocs plug-in using Visual C#

1. Create a new Visual C# Class Library project.
2. Right click on References from the Solution Explorer and Add Reference. The Add Reference

dialog box appears.
3. From the COM type libraries, select the HotDocs 11 Type Library. Click OK.
4. Add a using HotDocs; statement to the project.

If you are using the example below you will also need to add using
System.Runtime.InteropServices statement and using
System.Windows.Forms statement to the project. If you would like to work from the
example code you can copy it into the project at this stage. If chose to copy the code then
you will need to create your own GUID and replace the example GUID where ever it

HotDocs API

268

appears in the example, generate property stubs for Cmd1 and Cmd2, and replace the
sample icon location with the real location of your chosen icon.

5. In the project, select the interface(s) your plug-in will implement from the HotDocs type library.
6. Right click to implement the interface: adds stub functions for each function of the selected

interface.
7. Write the necessary code to implement each function of the selected interface.
8. Register the plug-in DLL with HotDocs by passing its CLSID to the PluginsClass.Register method.

For example:

 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}",
"Sample Menu Plugin", 100, 1);

9. Right click on the project in the Solution Explorer and select Properties. On the Build tab check
the box to Register for COM interop.

10. Change the version to Release and build the solution to produce a COM server DLL.
11. Locate the .dll in your visual studio project files and copy the COM server DLL to the folder where

HotDocs is installed.
12. In an elevated command line using RegAsm register the DLL with Windows. For example:

C:\>Windows\Microsoft.NET\Framework\v4.0.30319\RegAsm.exe
"C:\Program Files (x86)\HotDocs\WindowMenuExtension.dll" /codebase

Example

The following Visual C# example implements the ILibraryWindowMenuExtension interface:

[ComVisible(true)]
[Guid("12345678-1111-2222-AAAA-DDDDDDDDDDDD")]
public class WindowMenuExt : HotDocs.ILibraryWindowMenuExtension
{
 public void Command(string libraryPath, LibraryEntity
caretEntry, int commandId)
 {
 if (commandId == cmd1)
 System.Diagnostics.Process.Start("http://www.hotdocs.co
m");
 if (commandId == cmd2)
 MessageBox.Show("Menu sample w/icon selected");
 }

 public void DisplayMenuInitialize(string libraryPath,
LibraryEntity caretEntry)
 {
 MessageBox.Show(caretEntry.Title);
 }

 public void GetMenuEntry(int menuPosition, ref string menuText,
ref Icon Icon, ref bool enabled, ref bool callAgain, int commandId)

Plug-in API

269

 {
 HotDocs.Icon icon = new Icon();
 icon.LoadIcon(@"C:\images\MenuEntry.ico");

 switch (menuPosition)
 {
 case 0:
 menuText = "HotDocs Website";
 enabled = true;
 callAgain = true;
 cmd1 = commandId;
 break;
 case 1:
 //Add a separator
 menuText = "-";
 enabled = false;
 break;
 case 2:
 menuText = "Menu Sample w/icon";
 Icon = icon;
 enabled = true;
 callAgain = false;
 cmd2 = commandId;
 break;
 default:
 break;
 }
 }

 public void GetMenuTitle(ref string menuTitle)
 {
 menuTitle = "Menu Ext Plugin";
 }

 public void Initialize()
 {
 //Do any one time initialization
 }

 public void LibraryInitialized()
 {
 MessageBox.Show("The library has been initialized");
 }

 [ComRegisterFunction]
 public static void RegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-
DDDDDDDDDDDD}", "Sample Menu Plugin", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app
);
 }

 [ComUnregisterFunction]
 public static void UnRegisterPlugin(Type t)
 {

HotDocs API

270

 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-
DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app
);

 }

}

ILibraryWindowContextMenuExtension Interface

ILibraryWindowContextMenuExtension Interface

This interface lets you create a plug-in that adds a shortcut (context) menu to the HotDocs library window.
When users right-click an item in the library, your plug-in can add commands to the shortcut menu.
Specifically, this interface lets you add your own submenu to the existing shortcut menu.

When HotDocs starts up, it attempts to load each registered plug-in. If it finds a plug-in that implements
the ILibraryWindowContextMenuExtension interface, HotDocs calls ContextInitialize to load and initialize
the plug-in. Then, whenever the user right-clicks a library item, HotDocs calls ContextGetMenuTitle,
passing it information about which library entries are selected to determine which, if any, shortcut menus
to display. After determining which menus to display, HotDocs calls ContextGetMenuEntry a number of
times to retrieve the entries for the submenu. Finally, if the user selects an entry from your submenu,
HotDocs calls ContextCommand and passes it the identifier for the command.

Function Description

ContextCommand

This function is called when a user selects one of the entries in a custom
shortcut menu.

ContextGetMenuEntry

This function is called when a user right-clicks an item in the library to
display a shortcut menu. HotDocs calls this function repeatedly to get the
name of each entry in the custom submenu and stops when the function
fails, or when menuText is an empty string ("").

ContextGetMenuTitle

This function is called when a user right-clicks an item in the library to
display a shortcut menu. HotDocs passes information about the selected
library item(s), which can be used to determine which entries to include in
the submenu, or how submenu commands should operate. The plug-in can
then tell HotDocs the name of the submenu, where it should appear in the
shortcut menu, and whether it should be preceded or followed by a
separator bar. Finally, the plug-in can also enable or disable the submenu
as needed.

ContextInitialize

This function is called when HotDocs starts up to determine if it should

Plug-in API

271

load the plug-in. If the function fails, HotDocs will not load the plug-in.

ContextLibraryInitialized

This function is called when the library is initialized.

Example (Visual C#)

The following Visual C# example implements the HotDocs.ILibraryWindowContextMenuExtension interface:

[ComVisible(true)]
[Guid("12345678-1111-2222-AAAA-DDDDDDDDDDDD")]
public class WindowMenuExt : HotDocs.ILibraryWindowContextMenuExtension
{
 static bool initialized = false;

 public void ContextCommand(int commandId)
 {
 if (commandId == cmd1)
 MessageBox.Show("Command 1 selected");
 if (commandId == cmd2)
 MessageBox.Show("Command 2 selected");
 }

 public void ContextGetMenuEntry(int menuPosition, ref string menuText,
ref bool enabled, ref bool callAgain, int commandId)
 {
 switch (menuPosition)
 {
 case 0:
 menuText = "Command 1";
 cmd1 = commandId;
 enabled = true;
 break;
 case 1:
 menuText = "Command 2";
 cmd2 = commandId;
 enabled = true;
 break;
 default:
 break;
 }
 }

 public void ContextGetMenuTitle(string libraryPath, LibraryEntity
caretEntry, ref string menuTitle, ref int menuPosition, ref bool enabled, ref
bool separatorBefore, ref bool separatorAfter)
 {
 menuTitle = "My Submenu";
 menuPosition = -1; //Adds the new menu t the bottom of the context
menu
 }

 public void ContextInitialize()
 {
 }

HotDocs API

272

 public void ContextLibraryInitialized()
 {
 if (!initialized)
 {
 //Add Code here
 initialized = true;
 }
 }

 [ComRegisterFunction]
 public static void RegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}",
"Context Menu", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }

 [ComUnregisterFunction]
 public static void UnRegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }
}

ContextCommand Function

This function is called when a user selects one of the entries in a custom shortcut menu.

Syntax

ContextCommand (int commandId)

Parameter Description

commandId Indicates which command was selected, which the function can use to
determine which actions to perform.

To find out which library items are selected when this function is called, refer to the caretEntry
parameter of the ContextGetMenuTitle function.

Example (Visual C#)

The following Visual C# example implements the ContextCommand function:

Plug-in API

273

public void ContextCommand(int commandId)
{
 if (commandId == cmd1)
 {
 //Code for first command
 MessageBox.Show("Command 1 selected");
 }
 if (commandId == cmd2)
 {
 //Code for second command
 MessageBox.Show("Command 2 selected");
 }
}

ContextGetMenuEntry Function

This function is called when a user right-clicks an item in the library to display a shortcut menu. HotDocs
calls this function repeatedly to get the name of each entry in the custom submenu and stops when the
function fails, or when menuText is an empty string ("").

Syntax

ContextGetMenuEntry (int menuPosition , ref string menuText , ref bool enabled , ref
bool callAgain , int commandId)

Parameter Description

menuPosition A counter that tells the plug-in how many times HotDocs has called this
function.

menuText The text for the menu entry. (If menuText is a hyphen (-), HotDocs adds a
separator to the menu.)

enabled Specifies whether the menu entry should be enabled (TRUE) or disabled
(FALSE).

callAgain Indicates whether HotDocs should call this function again to add additional
entries to the submenu.

commandId An identifier HotDocs passes to the ContextCommand function to specify
which menu entry is called. The plug-in should save this identifier so it knows
which command is selected from the submenu.

Example (Visual C#)

The following Visual C# example implements the ContextGetMenuEntry function:

HotDocs API

274

public void ContextGetMenuEntry(int menuPosition, ref string menuText, ref
bool enabled, ref bool callAgain, int commandId)
{
 switch (menuPosition)
 {
 case 0:
 menuText = "Command 1";
 cmd1 = commandId;
 enabled = true;
 break;
 case 1:
 menuText = "Command 2";
 cmd2 = commandId;
 enabled = true;
 callAgain = false;
 break;
 default:
 break;
 }
}

ContextGetMenuTitle Function

This function is called when a user right-clicks an item in the library to display a shortcut menu. HotDocs
passes information about the selected library item(s), which can be used to determine which entries to
include in the submenu, or how submenu commands should operate. The plug-in can then tell HotDocs
the name of the submenu, where it should appear in the shortcut menu, and whether it should be
preceded or followed by a separator bar. Finally, the plug-in can also enable or disable the submenu as
needed.

Syntax

ContextGetMenuTitle (string libraryPath , HotDocs.LibraryEntity caretEntry , ref
string menuTitle , ref int menuPosition , ref bool enabled , ref bool separatorBefore
, ref bool separatorAfter)

Parameter Description

libraryPath The file path for the open library.

caretEntry A HotDocs.LibraryEntity object representing the item selected in the library.

menuTitle Returns the title of the menu to add.

menuPosition The position in the shortcut menu where the new menu should be placed. A
value of -1 represents the bottom of the menu.

enabled Specifies whether the menu entry should be enabled (TRUE) or disabled

Plug-in API

275

(FALSE).

separatorBefore Specifies whether or not a separator bar will be placed in the shortcut menu
before the title.

separatorAfter Specifies whether or not a separator bar will be placed in the shortcut menu
after the title.

Example (Visual C#)

The following Visual C# example implements the ContextGetMenuTitle function:

public void ContextGetMenuTitle(string libraryPath, LibraryEntity caretEntry,
ref string menuTitle, ref int menuPosition, ref bool enabled, ref bool
separatorBefore, ref bool separatorAfter)
{
 menuTitle = "My Submenu";
 menuPosition = -1;
}

ContextInitialize Function

HotDocs API must not be used during a plug-in's initialization. Plug-ins must wait until
HotDocs is itself fully initialized (e.g. after all the plugins have loaded) before calling its APIs,
or it risks leaving HotDocs running (hidden) after the user closes it.

This function is called when HotDocs starts up to determine if it should load the plug-in. If the function
fails, HotDocs will not load the plug-in.

Syntax

ContextInitialize ()

When HotDocs calls this function, it has not completely loaded its COM DLLs, which means
you cannot call HotDocs COM interfaces in this function. Instead, you can call those interfaces
in ContextLibraryInitialized, which HotDocs calls after they are made available.

Example (Visual C#)

The following Visual C# example implements the ContextInitialize function:

public void ContextInitialize()
{
}

HotDocs API

276

ContextLibraryInitialized Function

This function is called when the library is initialized.

Syntax

ContextLibraryInitialized ()

Example (Visual C#)

The following Visual C# example implements the ContextLibraryInitialized function and adds a user
defined menu item using AddUserMenuItem2:

public void ContextLibraryInitialized()
{
static void Main()
 {
 HotDocs.Application app = new HotDocs.Application();

 HotDocs.Icon icon = new HotDocs.Icon();
 icon.LoadIcon(@"C:\images\UserMenuIcon.ico");
 app.AddUserMenuItem2("User Menu Entry #1", HDLIMENU.LI_FILE, 5,
icon);

 Marshal.ReleaseComObject(icon);
 Marshal.ReleaseComObject(app);
 }
}

ILibraryWindowFileHandlerExtension Interface

ILibraryWindowFileHandlerExtension Interface

This interface lets you create a plug-in that specifies how HotDocs handles certain types of files when they
are edited or assembled from the library window. For example, you can change what happens when a user
selects an .RTF template in the library and clicks the Edit button. In this case, the plug-in could first locate
the template in a document management system, check it out, and open it in the word processor for
editing.

Plug-in API

277

When HotDocs starts up, it attempts to load each registered plug-in. If it finds a plug-in that implements
the ILibraryWindowFileHandlerExtension interface, HotDocs calls Initialize to load and initialize the plug-in.
After initialization, HotDocs calls RegisterFileType to find out which file name extensions will be handled by
the plug-in. Then, when a user selects an item in the library with one of these registered file name
extensions, HotDocs calls the Assemble or Edit function (depending on whether the user chooses to
assemble or edit the selected file) to determine how it should handle the file.

Functions

Function Description

Assemble

This function is called when a file with one of the registered file name
extensions is selected and assembled from the library window. For example,
you could use this plug-in to set command-line options for all templates with
a given file name extension. Then, when a user assembles a template, the
command-line options for that item in the library can be ignored or
substituted with different options.

Edit

This function is called when a file with one of the registered file name
extensions is selected and edited from the library window. For example, this
function could check a template out of a document management system
before it is edited.

Initialize

This function is called when HotDocs starts up to determine if it should load
the plug-in. If the function fails, HotDocs will not load the plug-in.

LibraryInitialized

This function is called when the library is initialized.

RegisterFileType

This function registers the file name extensions that will be handled by the
library window file handler plug-in. It is called repeatedly until it fails or until
callAgain is set to FALSE.

Example (Visual C#)

The following Visual C# example implements the HotDocs.ILibraryWindowFileHandlerExtension interface.

[ComVisible(true)]
[Guid("12345678-1111-2222-AAAA-DDDDDDDDDDDD")]
public class FileHandlerExt : HotDocs.ILibraryWindowFileHandlerExtension
{
 public void Assemble(string FileName, string switches, ref string
alternateFilename, ref string alternateSwitches, ref bool hotdocsProcess)
 {
 if (switches == "")
 alternateSwitches = switches + " /stw";

 hotdocsProcess = true;
 }

 public void Edit(string FileName, ref string alternateFilename, ref bool
hotdocsProcess)

HotDocs API

278

 {
 //Add code
 MessageBox.Show(FileName + " is prevented from editing.");
 hotdocsProcess = false;
 }

 public void Initialize()
 {
 }

 public void LibraryInitialized()
 {
 }

 public void RegisterFileType(int callcounter, ref string extension, ref
bool supportEdit, ref bool supportAssembly, ref bool callAgain)
 {
 switch (callcounter)
 {
 case 0:
 extension = ".rtf";
 supportEdit = true;
 supportAssembly = true;
 callAgain = true;
 break;
 case 1:
 extension = ".docx";
 supportEdit = true;
 supportAssembly = true;
 callAgain = true;
 break;
 case 2:
 extension = ".hpt";
 supportEdit = false;
 supportAssembly = true;
 callAgain = false;
 break;
 default:
 break;
 }
 }

 [ComRegisterFunction]
 public static void RegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}", "File
Handler", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }

 [ComUnregisterFunction]
 public static void UnRegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);

Plug-in API

279

 }
}

Assemble Function

This function is called when a file with one of the registered file name extensions is selected and
assembled from the library window. For example, you could use this plug-in to set command-line options
for all templates with a given file name extension. Then, when a user assembles a template, the
command-line options for that item in the library can be ignored or substituted with different options.

This function only checks templates with file types registered using RegisterFileType.

Syntax

Assemble (string FileName , string switches , ref string alternateFilename , ref
string alternateSwitches , ref bool hotdocsProcess)

Parameter Description

FileName Complete path and file name for the selected library item.

switches Command-line options (switches) for the selected library item.

alternateFilename Alternate file name for the selected library item. If the fileName is a document
identifier, for example, this parameter could return the actual file name of the
template file.

alternateSwitches Alternate command-line options for the selected library item. Using this
parameter, the plug-in could be written to ignore any command-line options
in a library and only use command-line options specified in this function.

hotdocsProcess If this parameter is TRUE, HotDocs will assemble the template. If it is FALSE,
HotDocs will do nothing.

Example (Visual C#)

The following Visual C# example checks the command-line options of the templates being assembled to
see if the /stw switch is included. If not, /stw is added so that all assembled templates are automatically
sent to the word processor:

public void Assemble(string FileName, string switches, ref string
alternateFilename, ref string alternateSwitches, ref bool hotdocsProcess)
{
 if (switches != "/stw")
 {
 alternateSwitches = switches + " /stw";

HotDocs API

280

 }

 hotdocsProcess = true;
}

Edit Function

This function is called when a file with one of the registered file name extensions is selected and edited
from the library window. For example, this function could check a template out of a document
management system before it is edited.

Syntax

Edit (string fileName , ref string alternateFilename , ref bool hotdocsProcess)

Parameter Description

fileName Complete path and file name for the selected library item.

alternateFilename Alternate file name for the selected library item. If the fileName is a document
identifier, for example, this parameter could return the actual file name of the
template file.

hotdocsProcess If this parameter is TRUE, HotDocs will open the template for editing. If it is
FALSE, HotDocs will do nothing.

Example (Visual C#)

The following Visual C# example prevents the normal HotDocs editing process for registered file types
and informs the user with a message:

public void Edit(string FileName, ref string alternateFilename, ref bool
hotdocsProcess)
{
 MessageBox.Show(FileName + " is prevented from editing.")
 hotdocsProcess = false;
}

Initialize Function

Plug-in API

281

HotDocs API must not be used during a plug-in's initialization. Plug-ins must wait until
HotDocs is itself fully initialized (e.g. after all the plugins have loaded) before calling its APIs,
or it risks leaving HotDocs running (hidden) after the user closes it.

This function is called when HotDocs starts up to determine if it should load the plug-in. If the function
fails, HotDocs will not load the plug-in.

When HotDocs calls this function, it has not completely loaded its COM DLLs, which means
you cannot call HotDocs COM interfaces in this function. Instead, you can call those interfaces
in LibraryInitialized, which HotDocs calls after they are made available.

Syntax

void Initialize()

Example (Visual C#)

The following Visual C# example implements the Initialize function:

public void Initialize()
{
}

LibraryInitialized Function

This function is called when the library is initialized.

Syntax

void LibraryInitialized ()

Example (Visual C#)

The following Visual C# example displays a message box when the library is initialized

public void LibraryInitialized()
{
 MessageBox.Show("The library has been initialized");
}

HotDocs API

282

RegisterFileType Function

This function registers the file name extensions that will be handled by the library window file handler
plug-in. It is called repeatedly until it fails or until callAgain is set to FALSE.

Syntax

RegisterFileType (int callcounter , ref string extension , ref bool supportEdit ,
ref bool supportAssembly , ref bool callAgain)

Parameter Description

callcounter A 0-based counter that tells the plug-in how many times HotDocs has called
this function.

extension File name extension to register (with or without a preceding period).

supportEdit Specifies whether the plug-in will handle the Edit command for the extension
file type.

supportAssembly Specifies whether the plug-in will handle the Assemble command for the
extension file type.

callAgain Indicates whether HotDocs should call this function again.

Example (Visual C#)

The following Visual C# example registers several file types to be handled by the file handler plug-in. .RTF
and .DOCX templates will have edit and assembly support, but the third file name extension, .HPT, will
only have support for assembly. HotDocs calls this function repeatedly, incrementing callcounter each
time, until callAgain is FALSE:

public void RegisterFileType(int callcounter, ref string extension, ref bool
supportEdit, ref bool supportAssembly, ref bool callAgain)
{
 switch (callcounter)
 {
 case 0:
 extension = ".rtf";
 supportEdit = true;
 supportAssembly = true;
 callAgain = true;
 break;
 case 1:
 extension = ".docx";
 supportEdit = true;
 supportAssembly = true;
 callAgain = true;
 break;
 case 2:
 extension = ".hpt";
 supportEdit = false;

Plug-in API

283

 supportAssembly = true;
 callAgain = false;
 break;
 default:
 break;
 }
}

ILibraryWindowIconProvider Interface

ILibraryWindowIconProvider Interface

This interface lets you create a plug-in that changes the icons displayed next to items in the HotDocs
library. Specifically, it allows you to place an "overlay" icon on top of the existing icons. For example, if you
want to create a version control plug-in, you could use overlay status icons to indicate which templates
are checked in, checked out, or not under version control.

When HotDocs starts up, it attempts to load each registered plug-in. If it finds a plug-in that implements
the ILibraryWindowIconProvider interface, HotDocs calls:

1. Initialize to load and initialize the plug-in. (If Initialize returns a failure code, HotDocs will stop
calling plug-in functions.)

2. LibraryInitialized to complete initialization of the plug-in.
3. UpdateLibraryEntry to update the overlay icons for each item in the library as determined by the

plug-in.

This interface is very complicated and difficult to implement; it is only recommended for the
most advanced integrators.

Plug-ins that implement the ILibraryWindowIconProvider interface must be in-process DLLs.

Functions

Function Description

Initialize

This function is called when HotDocs starts up to determine if it should load
the plug-in. If the function fails, HotDocs will not load the plug-in.

LibraryInitialized

This function is called when the library is initialized.

UpdateLibraryEntry

This function is called each time HotDocs updates the list of items in the
library window. For example, when an item is added or removed from the
library, HotDocs updates the list of items and calls UpdateLibraryEntry for
each item in the library.

HotDocs API

284

Example (Visual C#)

The following Visual C# example implements the ILibraryWindowIconProvider interface and adds an
overlay icon to each RTF template in the library.

[ComVisible(true)]
[Guid("12345678-1111-2222-AAAA-DDDDDDDDDDDD")]
public class IconProvider : HotDocs.ILibraryWindowIconProvider
{
 public void Initialize()
 {
 }

 public void LibraryInitialized()
 {
 MessageBox.Show("The library has been initialized");
 }

 public void UpdateLibraryEntry(LibraryEntity pItem, bool bMultithreaded)
 {
 HotDocs.Icon icon = new HotDocs.Icon();
 icon.LoadIcon(@"C:\images\hptIcon.ico");
 HotDocs._LibraryEntity2 pItem2 = (HotDocs._LibraryEntity2)pItem;

 if (System.IO.Path.GetExtension(pItem2.TemplateFullPath.ToLower()) ==
".hpt")
 {
 pItem2.OverlayIndex = 1;
 }
 else
 pItem2.OverlayIndex = -1;

 System.Runtime.InteropServices.Marshal.ReleaseComObject(icon);
 }

 [ComRegisterFunction]
 public static void RegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}", "Icon
Provider", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }

 [ComUnregisterFunction]
 public static void UnRegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }
}

Plug-in API

285

Initialize Function

HotDocs API must not be used during a plug-in's initialization. Plug-ins must wait until
HotDocs is itself fully initialized (e.g. after all the plugins have loaded) before calling its APIs,
or it risks leaving HotDocs running (hidden) after the user closes it.

This function is called when HotDocs starts up to determine if it should load the plug-in. If the function
fails, HotDocs will not load the plug-in.

When HotDocs calls this function, it has not completely loaded its COM DLLs, which means
you cannot call HotDocs COM interfaces in this function. Instead, you can call those interfaces
in LibraryInitialized, which HotDocs calls after they are made available.

Syntax

void Initialize()

Example (Visual C#)

public void Initialize()
{
}

LibraryInitialized Function

This function is called when the library is initialized.

Syntax

void LibraryInitialized ()

Example (Visual C#)

The following Visual C# example displays a message box when the library is initialized.

public void LibraryInitialized()
{
 MessageBox.Show("The library has been initialized");
}

HotDocs API

286

UpdateLibraryEntry Function

This function is called each time HotDocs updates the list of items in the library window. For example,
when an item is added or removed from the library, HotDocs updates the list of items and calls
UpdateLibraryEntry for each item in the library.

Syntax

UpdateLibraryEntry (LibraryEntity pItem , bool bMultithreaded)

Parameters Description

pItem The library item to update.

bMultithreaded Indicates whether the updates should occur on separate threads or
consecutively on the same thread.

Example (Visual C#)

The following Visual C# example adds an overlay icon to each HPT template in the library.

public void UpdateLibraryEntry(LibraryEntity pItem, bool bMultithreaded)
{
 HotDocs.Icon icon = new HotDocs.Icon();
 icon.LoadIcon(@"C:\images\hptIcon.ico");
 HotDocs._LibraryEntity2 pItem2 = (HotDocs._LibraryEntity2)pItem;

 if (System.IO.Path.GetExtension(pItem2.TemplateFullPath.ToLower()) ==
".hpt")
 {
 pItem2.OverlayIndex = 1;
 }
 else
 pItem2.OverlayIndex = -1;

 System.Runtime.InteropServices.Marshal.ReleaseComObject(icon);
}

ILibraryWindowMenuExtension Interface

ILibraryWindowMenuExtension Interface

Plug-in API

287

This interface lets you create a plug-in that adds a menu to the library window menu bar. For example,
you can add a menu containing commands specific to your integration with HotDocs.

When HotDocs starts up, it attempts to load each registered plug-in. If it finds a plug-in that implements
the ILibraryWindowMenuExtension interface, HotDocs calls:

1. Initialize to load and initialize the plug-in. (If Initialize returns a failure code, HotDocs will stop
calling plug-in functions.)

2. LibraryInitialized to complete initialization of the plug-in.
3. GetMenuTitle to retrieve the menu title.

When a user selects your plug-in's menu, HotDocs then calls:

1. DisplayMenuInitialize to perform any initialization your menu requires.
2. GetMenuEntry as many times as needed to retrieve the name of each command in the menu.

Finally, when a user selects an entry from your plug-in's menu, HotDocs calls Command and passes it
information about which library entries are selected (if any).

Functions

Function Description

Command

This function is called when a user selects one of the entries in your plug-in's
library window menu. If the user has a library entry selected when this
function is called, HotDocs passes information about the selected entry to
this function so your plug-in can perform an action based on the selected
entry as needed.

DisplayMenuInitialize

This function initializes your plug-in's library window menu. HotDocs calls this
function each time the user accesses your plug-in's menu, which allows it to
behave differently depending on which library is currently open or which
items are currently selected in the library.

GetMenuEntry

This function retrieves the commands that will appear on your plug-in's
library window menu. HotDocs calls it repeatedly until it fails, or until
menuText is an empty string ("").

GetMenuTitle

This function retrieves the title for your plug-in's library window menu. If it
fails, or if the text returned is an empty string (""), HotDocs will not display the
menu.

Initialize This function is called when HotDocs starts up to determine if it should load
the plug-in. If the function fails, HotDocs will not load the plug-in.

LibraryInitialized

This function is called when the library is initialized.

Example (Visual C#)

HotDocs API

288

The following Visual C# example implements the ILibraryWindowMenuExtension interface to create a
custom library window menu bar plug-in.

[ComVisible(true)]
[Guid("12345678-1111-2222-AAAA-DDDDDDDDDDDD")]
public class WindowMenuExt : HotDocs.ILibraryWindowMenuExtension
{
 public void Command(string libraryPath, LibraryEntity caretEntry, int
commandId)
 {
 if (commandId == cmd1)
 System.Diagnostics.Process.Start("http://www.hotdocs.com");
 if (commandId == cmd2)
 MessageBox.Show("Menu sample w/icon selected");
 }

 public void DisplayMenuInitialize(string libraryPath, LibraryEntity
caretEntry)
 {
 MessageBox.Show(caretEntry.Title);
 }

 public void GetMenuEntry(int menuPosition, ref string menuText, ref Icon
Icon, ref bool enabled, ref bool callAgain, int commandId)
 {
 HotDocs.Icon icon = new Icon();
 icon.LoadIcon(@"C:\images\MenuEntry.ico");

 switch (menuPosition)
 {
 case 0:
 menuText = "HotDocs Website";
 enabled = true;
 callAgain = true;
 cmd1 = commandId;
 break;
 case 1:
 //Add a separator
 menuText = "-";
 enabled = false;
 break;
 case 2:
 menuText = "Menu Sample w/icon";
 Icon = icon;
 enabled = true;
 callAgain = false;
 cmd2 = commandId;
 break;
 default:
 break;
 }
 }

 public void GetMenuTitle(ref string menuTitle)
 {

Plug-in API

289

 menuTitle = "Menu Ext Plugin";
 }

 public void Initialize()
 {
 //Do any one time initialization
 }

 public void LibraryInitialized()
 {
 MessageBox.Show("The library has been initialized");
 }

 [ComRegisterFunction]
 public static void RegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}",
"Sample Menu Plugin", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }

 [ComUnregisterFunction]
 public static void UnRegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }
}

Command Function

This function is called when a user selects one of the entries in your plug-in's library window menu. If the
user has a library entry selected when this function is called, HotDocs passes information about the
selected entry to this function so your plug-in can perform an action based on the selected entry as
needed.

Syntax

void Command(string libraryPath, HotDocs.LibraryEntity caretEntry, int commandId)

Parameters Description

libraryPath The file path for the open library.

caretEntry The currently selected library entry.

commandId An identifier for the command, which your plug-in can use to determine

HotDocs API

290

which command was selected. (This is the same as commandId in
GetMenuEntry.)

Example (Visual C#)

The following Visual C# example implements the Command function.

public void Command(string libraryPath, LibraryEntity caretEntry, int
commandId)
{
 if (commandId == cmd1)
 System.Diagnostics.Process.Start("http://www.hotdocs.com");
 if (commandId == cmd2)
 MessageBox.Show("Menu sample w/icon selected");
}

DisplayMenuInitialize Function

This function initializes your plug-in's library window menu. HotDocs calls this function each time the user
accesses your plug-in's menu, which allows it to behave differently depending on which library is currently
open or which items are currently selected in the library.

Syntax

void DisplayMenuInitialize(string libraryPath, HotDocs.LibraryEntity caretEntry)

Parameters Description

libraryPath The file path for the currently open library.

caretEntry The currently selected library entry.

Example (Visual C#)

The following Visual C# example displays a message when accessing your plug-in menu, showing the
currently selected library item.

public void DisplayMenuInitialize(string libraryPath, LibraryEntity
caretEntry)
{
 MessageBox.Show(caretEntry.Title);
}

Plug-in API

291

GetMenuEntry Function

This function retrieves the commands that will appear on your plug-in's library window menu. HotDocs
calls it repeatedly until it fails, or until menuText is an empty string ("").

Syntax

void GetMenuEntry(int menuPosition, ref string menuText, ref HotDocs.Icon Icon, ref
bool enabled, ref bool callAgain, int commandId)

Parameters Description

menuPosition A 0-based counter that tells your plug-in code how many times HotDocs has
called GetMenuEntry. For example, when this counter is 1, your code should
return the command you want to appear as the second entry in your plug-in's
library window menu.

menuText The text for the menu entry. If menuText is a hyphen (-), HotDocs will add a
separator to the menu.

Icon The icon that will appear next to the menu entry.

enabled Indicates if the menu entry should be enabled (TRUE) or disabled (FALSE).

callAgain Indicates if the function should be called again to retrieve the next menu
entry (TRUE), or if your plug-in is finished adding entries to the menu (FALSE).

commandId An identifier for the menu entry. When a user selects an item from your plug-
in's menu, HotDocs will pass this identifier to the Command function so your
plug-in knows which command was selected.

Example (Visual C#)

The following Visual C# example implements the GetMenuEntry function:

public void GetMenuEntry(int menuPosition, ref string menuText, ref Icon
Icon, ref bool enabled, ref bool callAgain, int commandId)
{
 HotDocs.Icon icon = new Icon();
 icon.LoadIcon(@"C:\images\MenuEntry.ico");

 switch (menuPosition)
 {
 case 0:
 menuText = "HotDocs Website";
 enabled = true;
 callAgain = true;
 cmd1 = commandId;
 break;

HotDocs API

292

 case 1:
 //Add a separator
 menuText = "-";
 enabled = false;
 break;
 case 2:
 menuText = "Menu Sample w/icon";
 Icon = icon;
 enabled = true;
 callAgain = false;
 cmd2 = commandId;
 break;
 default:
 break;
 }
}

GetMenuTitle Function

This function retrieves the title for your plug-in's library window menu. If it fails, or if the text returned is
an empty string (""), HotDocs will not display the menu.

Syntax

void GetMenuTitle(ref string menuTitle)

Parameters Description

menuTitle The title of your plug-in's library window menu.

Example (Visual C#)

The following Visual C# example implements the GetMenuTitle function:

public void GetMenuTitle(ref string menuTitle)
{
 menuTitle = "Menu Ext Plugin";
}

Initialize Function

Plug-in API

293

HotDocs API must not be used during a plug-in's initialization. Plug-ins must wait until
HotDocs is itself fully initialized (e.g. after all the plugins have loaded) before calling its APIs,
or it risks leaving HotDocs running (hidden) after the user closes it.

This function is called when HotDocs starts up to determine if it should load the plug-in. If the function
fails, HotDocs will not load the plug-in.

When HotDocs calls this function, it has not completely loaded its COM DLLs, which means
you cannot call HotDocs COM interfaces in this function. Instead, you can call those interfaces
in LibraryInitialized, which HotDocs calls after they are made available.

Syntax

void Initialize()

Example (Visual C#)

The following Visual C# example implements the Initialize function.

public void Initialize()
{
}

LibraryInitialized Function

This function is called when the library is initialized.

Syntax

void LibraryInitialized ()

Example (Visual C#)

The following Visual C# example displays a message box when the library is initialized.

public void LibraryInitialized()
{
 MessageBox.Show("The library has been initialized");
}

HotDocs API

294

IOutputPlugin Interface

IOutputPlugin Interface

This interface enables you to create an output plug-in. Once you have created the plugin, when you are
assembling a document, you can see the plug-in by selecting File > Send Document To... The plug-in
also adds a new End of Interview output option. You can, for example, create a plug-in that outputs
documents to places like Google Drive or SkyDrive.

When HotDocs starts up, it attempts to load each registered plug-in. If it finds a plug-in that implements
the IOutputPlugin interface, HotDocs calls:

1. Initialize to load and initialize the plug-in. (If initialize returns a failure code, HotDocs will stop
calling plug-in functions.)

2. LibraryIntialized to complete initialization of the plug-in.

3. GetPlugInfo to retrieve the plug-in information.

When a user selects your plug-in's menu, HotDocs then calls:

4. DocumentAssembled to perform output options on the assembled template.

Functions

Function

DocumentAssembled

After document is assembled, this is called to output the plug-in to its
destination repository.

GetPlugInfo

This function is called to get information about plug-in functionality.

Initialize

This function is called when HotDocs starts up and add-in is loaded.

LibraryInitialized

This function is called when HotDocs starts up and add-in is loaded and the
main window is created.

Properties

Property Description

CommandId

This property is called to get the command Id (such as menu ID) associated
with this plug-in.

Example

Plug-in API

295

The following Visual C# example implements the HotDocs.IOutputPlugin interface along with using the
HotDocs.IPluginPreferences interface:

[ComVisible(true)]
[Guid("12345678-1111-2222-AAAA-DDDDDDDDDDDD")]
public class SendToFolder : HotDocs.IOutputPlugin, HotDocs.IPluginPreferences
{
 private string _dlgfolderPath;
 private int _commandId = 0;
 private string _outputPath = "OutputFolder";

 //Copy assembled template to folder of user choice.
 public bool DocumentAssembled(string filePath, bool bIsTempFile, string
templateTitle, string templateFilePath)
 {
 RegistryKey getKey =
Microsoft.Win32.Registry.CurrentUser.OpenSubKey(_outputPath, true);
 if (getKey != null)
 {
 string folderPath = (string)getKey.GetValue(_outputPath);
 string getExt = System.IO.Path.GetExtension(filePath);

 if (System.IO.File.Exists(System.IO.Path.Combine(folderPath,
templateTitle) + getExt))
 {
 int i = 0;
 while
(System.IO.File.Exists(System.IO.Path.Combine(folderPath, templateTitle) + i
+ getExt))
 {
 i++;
 }
 System.IO.File.Copy(filePath,
System.IO.Path.Combine(folderPath, templateTitle) + i + getExt);
 }
 else
 {
 System.IO.File.Copy(filePath,
System.IO.Path.Combine(folderPath, templateTitle) + getExt);
 }
 }
 else
 {
 createFolderPath();
 }
 return true;
 }

 public void GetPluginInfo(ref string UI_Name, ref string pluginToken, ref
bool bIncludeAtInterviewEnd, ref Icon Icon, ref string
supportedFileExtensions)
 {
 UI_Name = "Output Folder";
 pluginToken = "HDSendToFolderOutputPlugin";
 bIncludeAtInterviewEnd = true;

HotDocs API

296

 Icon.LoadIcon(@"C:\images\SendToFolder.ico");
 supportedFileExtensions = ".docx;.rtf;.pdf";
 }

 public void Initialize()
 {
 }

 public void LibraryInitialized()
 {
 }

 public int commandId
 {
 get
 {
 return _commandId;
 }
 set
 {
 _commandId = value;
 }
 }

 //Preference: Calls method, opens a dialog and allows users to set a
folder path that is written to the registry.
 public void Edit(IntPtr parentWindowHandle)
 {
 createFolderPath();
 }

 //Opens dialog form to allow user to set preferences.
 public void createFolderPath()
 {
 dlgChooseFolder dlg = new dlgChooseFolder();
 dlg.Show();
 _dlgfolderPath = dlg.folderPath;
 }

 [ComRegisterFunction]
 public static void RegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Register("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}",
"SendToFolder Output Plugin", 100, 1);
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
 }

 [ComUnregisterFunction]
 public static void UnRegisterPlugin(Type t)
 {
 HotDocs.Application app = new HotDocs.Application();
 app.Plugins.Unregister("{12345678-1111-2222-AAAA-DDDDDDDDDDDD}");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(app);
}

Plug-in API

297

DocumentAssembled Function

After the document is assembled, this function is called to output the plug-in to its destination repository.

Syntax

bool DocumentAssembled (string filePath, bool bIsTempFile, string TemplateTitle,
string templateFilePath)

Example (Visual C#)

The following Visual C# example implements the DocumentAssembled function. This example takes
advantage of the IPluginPreferences interface to save users plug-in preferences and stores those
preferences to the registry:

//Copy assembled template to folder of user choice.
private string _dlgfolderPath;
private string _outputPath = "OutputFolder";

public bool DocumentAssembled(string filePath, bool bIsTempFile, string
templateTitle, string templateFilePath)
{
 RegistryKey getKey =
Microsoft.Win32.Registry.CurrentUser.OpenSubKey(_outputPath, true);
 if (getKey != null)
 {
 string folderPath = (string)getKey.GetValue(_outputPath);
 string getExt = System.IO.Path.GetExtension(filePath);

 if (System.IO.File.Exists(System.IO.Path.Combine(folderPath,
templateTitle) + getExt))
 {
 int i = 0;
 while (System.IO.File.Exists(System.IO.Path.Combine(folderPath,
templateTitle) + i + getExt))
 {
 i++;
 }
 System.IO.File.Copy(filePath, System.IO.Path.Combine(folderPath,
templateTitle) + i + getExt);
 }
 else
 {
 System.IO.File.Copy(filePath, System.IO.Path.Combine(folderPath,
templateTitle) + getExt);
 }
 }
 else

HotDocs API

298

 {
 createFolderPath();
 }

 return true;
}

//Open dialog and allow user to set preferences.
public void createFolderPath()
{
 dlgChooseFolder dlg = new dlgChooseFolder();
 dlg.Show();
 _dlgfolderPath = dlg.folderPath;
}

GetPlugInfo Function

This function is called to get information about plug-in functionality.

Syntax

void GetPluginInfo (ref string UI_Name, ref string pluginToken, ref bool
bIncludeAtInterviewEnd, ref HotDocs.Icon Icon, ref string supportedFileExtensions)

Example (Visual C#)

The following Visual C# example implements the GetPlugInfo function:

public void GetPluginInfo(ref string UI_Name, ref string pluginToken, ref
bool bIncludeAtInterviewEnd, ref Icon Icon, ref string
supportedFileExtensions)
{
 UI_Name = "Output Folder";
 pluginToken = "HDSendToFolderOutputPlugin";
 bIncludeAtInterviewEnd = true;
 Icon.LoadIcon(@"C:\images\SendToFolder.ico");
 supportedFileExtensions = ".docx;.rtf;.pdf";
}

Initialize Function

Plug-in API

299

HotDocs API must not be used during a plug-in's initialization. Plug-ins must wait until
HotDocs is itself fully initialized (e.g. after all the plugins have loaded) before calling its APIs,
or it risks leaving HotDocs running (hidden) after the user closes it.

This function is called when HotDocs starts up and add-in is loaded.

When HotDocs calls this function, it has not completely loaded its COM DLLs, which means
you cannot call HotDocs COM interfaces in this function. Instead, you can call those interfaces
in LibraryInitialized, which HotDocs calls after they are made available.

Syntax

void Initialize()

Example (Visual C#)

The following Visual C# example implements the Initialize function.

public void Initialize()
{
}

LibraryInitialized Function

This function is called when HotDocs has loaded, an add-in has loaded, and the main window has been
created.

Syntax

void LibraryInitialized()

Example (Visual C#)

The following Visual C# example displays a message box when the library is initialized.

public void LibraryInitialized()
{
 MessageBox.Show("The library has been initialized");
}

HotDocs API

300

CommandId Property

This property is called to get the command Id (such as menu ID) associated with this plug-in.

Syntax

int commandId [set; get;]

Example (Visual C#)

The following Visual C# example implements the CommandId property:

private int _commandId = 0;
public int commandId
{
 get
 {
 return _commandId;
 }
 set
 {
 _commandId = value;
 }
}

IPluginPreferences Interface

IPluginPreferences Interface

This interface lets you set preferences for all Output or Plug-in interfaces implemented.

Function Description

IPluginPreferences

This function is called when a user selects the preferences button found by
navigating to the Tools menu > Options. When the HotDocs Options dialog
opens select the Plugins folder and navigate to the plugin you want to edit
on the Plugins list.

Example

The following Visual C# example implements the IPluginPreferences interface calling a method that opens
a new form allowing the user to set preferences for the plugin. The example shown is used in conjunction
with the IOutputPlugin interface :

Plug-in API

301

//IPluginPreferences: Calls custom method.
public void Edit(IntPtr parentWindowHandle)
{
 createFolderPath();
}

//Opens dialog form allowing user to set preferences.
public void createFolderPath()
{
 dlgChooseFolder dlg = new dlgChooseFolder();
 dlg.Show();
 _dlgfolderPath = dlg.folderPath;
}

//**Code for the custom dlgChooseFolder form **
public partial class dlgChooseFolder : Form
{
 string OutFolder = "OutputFolder";

 public dlgChooseFolder()
 {
 InitializeComponent();

 RegistryKey getKey =
Microsoft.Win32.Registry.CurrentUser.OpenSubKey(OutFolder, true);
 if (getKey != null)
 {
 string pathName = (string)getKey.GetValue(OutFolder);
 lblPath.Text = pathName;
 }
 }

 private void btnChooseFolder_Click(object sender, EventArgs e)
 {
 FolderBrowserDialog fldPath = new FolderBrowserDialog();
 fldPath.SelectedPath = lblPath.Text; fldPath.ShowNewFolderButton =
true;
 if (fldPath.ShowDialog() == DialogResult.OK)
 {
 lblPath.Text = fldPath.SelectedPath;
 RegistryKey key;
 key =
Microsoft.Win32.Registry.CurrentUser.CreateSubKey(OutFolder);
 key.SetValue(OutFolder, fldPath.SelectedPath);
 key.Close();
 }
 else
 {
 MessageBox.Show("Operation canceled");
 }
 }

 public string folderPath
 {
 get
 {

HotDocs API

302

 return lblPath.Text;
 }
 set
 {
 lblPath.Text = value;
 }
 }

 private void btnSave_Click(object sender, EventArgs e)
 {
 this.Close();
 }
}

IPluginPreferences Function

This function is called when a user selects the preferences button found by navigating to the Tools menu
> Options. When the HotDocs Options dialog opens select the Plugins folder and navigate to the plugin
you want to edit on the Plugins list.

Syntax

void Edit(System.IntPtr parentWindowHandle)

Example [Visual C#]

The following Visual C# example implements the IPluginPreferences function calling a method that opens
a new form allowing the user to set preferences for the plugin.

//IPluginPreferences: Calls custom method.
public void Edit(IntPtr parentWindowHandle)
{
 createFolderPath();
}
//See IPluginPreferences Interface for the remaining code

303

Contact HotDocs Sales and Support

HotDocs Technical Support

Support for customers with technical support agreements is available by calling the numbers below. To
expedite your call, please be at the computer on which the program is running.

Outside the European Union:

Method of Contact Information

Telephone (800) 828-8328 (U.S.)
+1 801 615 2200 (International)

U.S. technical support is available from 7:00am to 6:00pm (MST), Monday
through Friday.

E-mail support@hotdocs.com

Web Site http://www.hotdocs.com/support/

Inside the European Union:

Method of Contact Information

Telephone 0870 0100 676 (U.K.)
+44 131 220 9027 (International)

U.K. technical support is available from 9:00am to 5:00pm (GMT), Monday
through Friday.

E-mail tech@hotdocs.co.uk

Web Site http://www.hotdocs.com/support/

You may also find answers or solutions to questions you have in the HotDocs Wiki.

Click here for information on providing the HotDocs Publications team with documentation
feedback.

HotDocs Sales Support

mailto:support@hotdocs.com
http://www.hotdocs.com/support/
mailto:tech@hotdocs.co.uk
http://www.hotdocs.com/support/
http://wiki.hotdocs.com/

HotDocs API

304

Experienced HotDocs consultants are available to help you with a variety of services, including integrating
HotDocs with other products, building a template library, or providing training. Please contact your sales
representative to learn more.

Outside the European Union:

Method of Contact Information

Telephone (800) 500-3627 (U.S. Sales) (
801) 615-2200 (U.S. Business)
+44 131 226 3999 (International)

Fax (877) 356-3627 (U.S.)
(801) 868-3627 (International)

E-mail sales@hotdocs.com

Web Site http://www.hotdocs.com
http://www.hotdocs.com/products
http://www.hotdocs.com/services

Address 387 South 520 West
Suite 210
Lindon, UT 84042

Inside the European Union:

Method of Contact Information

Telephone 0870 606 6050 (U.K.)
+44 131 226 3999 (International)

Fax 0131 220 9024 (U.K.)
+44 131 220 9024 (International)

E-mail info@hotdocs.co.uk

Web Site http://www.hotdocs.co.uk

Address 14 South Charlotte Street
Edinburgh, EH2 4AX
Scotland

mailto:sales@hotdocs.com
http://www.hotdocs.com/
http://www.hotdocs.com/products
http://www.hotdocs.com/services
mailto:info@hotdocs.co.uk
http://www.hotdocs.co.uk/

305

Documentation Feedback
To improve the quality of the help file, we invite you to make comments or suggestions. When doing so,
please include as much information about your experience using the documentation as possible. For
example, if commenting about a specific topic, include the name of the topic in your feedback.

E-mail your comments and suggestions to publications@hotdocs.com.

The HotDocs Publications team cannot respond to technical support or project consulting issues.
We are mainly interested in problems with the documentation itself—such as erroneous
information, grammatical and spelling errors, or suggestions for topics to include in the next
release of the software.

mailto:publications@hotdocs.com

307

Glossary

.
.ANS: File name extension that designates that the file is a HotDocs answer file. Starting with the release

of HotDocs 2009, all answers files (even those with the .ANS file name extension) are saved in
XML format. The .ANS file name extension is retained to ensure backwards compatibility with
HotDocs 2008.

.ANX: File name extension that designates a HotDocs answer file.

.CMP: File name extension that designates that the file is a component file.

.DOCX: File name extension that designates that the file is a Microsoft Word document. (See text
document.)

.DOT: File name extension that designates that the file is a Microsoft Word DOT template. (See text
document.)

.HDA: File name extension that designates that the file is a HotDocs auto-assemble file.

.HDI: File name extension that designates that the file is HotDocs auto-install file.

.HFD, .HPD: File name extension that designates that the file is a HotDocs form document.

.HFT, .HPT: File name extension that designates that the file is a HotDocs form template.

.PDF: File name extension that designates that the file is a Portable Document Format file, a format
created and supported by Adobe. PDFs are a useful way of distributing documents in a format
most users can view—as long as they have Adobe Acrobat, Adobe Reader, or HotDocs Filler (with
HotDocs PDF Advantage) installed. With PDF Advantage, template developers can also create
PDF-based form templates. They can also create PDFs from assembled documents.

.RTF: File name extension that designates that the template file is a Word RTF file. (See text template.)

.WPD: File name extension that designates that the file is a WordPerfect document. (See text document.)

.WPT: File name extension that designates that the file is a WordPerfect template. (See text template.)

A
accelerator: A key or key combination that quickly performs routine tasks in HotDocs. For example, rather

than click the Print button, a user can press Ctrl+P and the document will be printed. Accelerators
are useful when users don't want to use the mouse.

addendum: The last section of a form document that contains answers that don't fit in their allotted fields
on the actual form. (See also overflow.)

additional text: See dialog element.

ADO: Short for ActiveX Data Objects, it's a data presentation layer that lets HotDocs communicate with a
database so HotDocs can retrieve data from it and use it to assemble a document. (See also
ODBC.)

HotDocs API

308

answer: Data users enter during an interview, or data provided by your integration. Answers are usually
merged into the document, but sometimes they are used to calculate other answers that are used
in the document.

answer collection: A file that contains the answers associated with the variables in one or more HotDocs
templates. (See also answer file.)

answer file: A saved file that contains the answers entered during an interview. Often users save their
answers in a file so they can use them to assemble other similar documents. (See also answer
collection.)

Answer File Manager: The library used to manage answer files. With Answer File Manager, users can
group answer files, view histories of their usage, and so forth. (The alternative is using Windows
Explorer to find, view, and use answer files.)

answer library: See library and Answer File Manager.

answer management: The system of using Answer File Manager to store and manage answer files. (The
alternative is using Windows Explorer to find, view, and use answer files.)

answer sharing: The process of creating and using same-named variables in multiple templates so that a
user can use the same answer file to assemble multiple documents. (Can also be called variable
flow-through.)

answer source: An answer file or DLL that is linked to a specific dialog in an interview. Users can enter
their answers in an answer source and have those answers available to them on demand. (During
an interview, a Select From Answer SourceSelect button appears on the dialog. The user clicks this
button and has access to the answers in the answer source.)

Answer Summary: A brief report HotDocs generates that lists the questions asked during an interview,
followed by the answers that were entered. (See also Question Summary.)

answer wizard: A button attached to a form field that users can click during direct-fill assembly. When
they click this button (Answer Wizard), a pop-up interview appears, asking one or more questions
that are required in order for an answer to be merged in the field. Frequently, answer wizards are
assigned to inactive fields in a form.

API: See HotDocs API.

ascend: The process of sorting answers in alphanumeric order, from 1 to 9, and from A to Z. (See also
descend.) You can also sort items in a template library, clause library, and answer library.

ASK instruction: An instruction that forces a dialog to be asked at a specific location in the script or
template. Frequently, ASK instructions are used when creating an interview component. They
allow developers to control the order in which dialogs are asked during the interview.

assemble, assembly: See document assembly.

Assembly Queue: A dialog box that shows a list of assemblies—pending, current, and completed. Users
can open the Assembly Queue by clicking its button (Assembly Queue) in the assembly window
toolbar. It is most useful when users have selected multiple templates for assembly.

assembly window: The window that appears when a user selects a template to assemble. By default, it
includes the Interview tab, the Document tab, the Question Summary tab, and Answer Summary
tab. Each of these tabs displays something unique about the document being assembled, such as
the questions that are required to customize the document or the assembled document itself.

Glossary

309

auto-assemble file: A self-executable file that contains one or more templates and their related files.
When packaged in an auto-assemble file (or HDA), the files are temporarily extracted and used to
assemble the document. Once assembly is complete, the extracted files are deleted. Auto-
assemble files are useful if template developers don't want users to have editing access to the
template files themselves.

auto-install file: A self-executable file that contains one or more templates and their related files. When
extracted, the files are saved to disk and references to them are added to a library. Auto-install
files provide a useful way to distribute templates or updates to template sets.

automate, automation: The process of converting any document (text or form) into an interactive
template. At its very core, automation is replacing changeable text in the document with variables.
Additional automation steps include making text in the template conditional, repeating sections
of the template so multiple answers can be entered, and inserting other boilerplate text into the
template.

Automator: See HotDocs Automator.

B
bar code: A format for an answer or a group of answers so that data can be quickly scanned using an

optical scanner. Bar codes are supported in both form templates and text templates. (In form
templates, developers assign the PDF417 property to the field. In text templates, developers
assign the preferred bar code font at the Advanced group of the Variable Field dialog box.)

binary files: In versions of HotDocs prior to HotDocs 2009, represents the format HotDocs-specific files—
such as library files, component files, and so forth—were saved in. Binary file formats are common
in most software applications. They allow information about the files to be encoded for storage
and processing purposes. However, one limitation of storing information in HotDocs in binary
format is that third-party application developers aren't able to inspect, edit, or otherwise make
use of information contained in the files. Another limitation is that the binary formats used in
HotDocs do not support the use of foreign characters (for example, international characters that
are not represented in your computer system's default language).

browser: A window that allows users to view HTML documents. When working with HotDocs Server,
interviews are displayed in a browser window rather than the regular HotDocs assembly window.

built-in variable: A predefined variable that performs a special function in a template, such as inserting
either today's date or the name of the current answer file. Built-in variables include TODAY, PN#,
ANSWER FILE NAME, and COUNTER.

C
century rollover: A HotDocs setting that controls whether years entered as two digits appear as 1900-

century years or 2000-century years.

check-box field: A type of form template field that represents some sort of pre-existing option a user
must select, such as a true/false value or a multiple-choice value.

chevrons: The double-angle brackets (« ») that surround a variable in a text template. Together, the
chevrons and variable name make up the variable field, for example, «Client Name».

HotDocs API

310

child dialog: A dialog that is inserted within another dialog. When it's inserted, it becomes linked to that
dialog—users can't answer questions in it without first viewing the parent dialog. Usually the two
dialogs are related in content or purpose.

clause: Predefined sections of text that can be selected and added to an assembled document. Usually
clauses are grouped together in a clause library so users can choose which ones they want to
insert, although some clauses are merged in the document automatically

clause archive: A compressed file that contains all of the clauses for a given template or clause library.
During assembly, clauses in the archive are extracted so they can be selected and added to an
assembled document.

Client: The application or integration that holds a reference to objects hosted by the server.

command-line option: An instruction used to control the operation of HotDocs. These instructions, or
commands, are added to any command line that causes HotDocs to run. They can alter the
operation of specific templates, or they can affect the overall operation of HotDocs.

comments: Notes or thoughts entered by the template developer either in a script or in a template.
Comments are one way to document processes within the template. If entered correctly, they will
not be visible to users in the assembled document.

component: An element in a HotDocs template that displays or stores information about the answers
that are merged. Examples of components include variables, dialogs, dialog elements, merge text
groups, and formats.

component file: The file that stores all of the components used in a template. The component file and
template file are both necessary for template development and document assembly to work
correctly. Developers use Component Manager to work with components.

Component Manager: The tool used to coordinate component usage in a template. Component
Manager shows all of the components used in the template and provides options for working
with those components.

Computation variable: A type of component that performs calculations or executes other instructions
within the template. Computation variable scripts are created using the HotDocs scripting
language.

conditional text: Text in the template that should be included in the assembled document only under
certain circumstances. Conditions are controlled using IF instructions and expressions.

control field: A type of form template field that is used for behind-the-scenes tasks, including inserting
related templates and assigning values to variables, just to name a few.

COUNTER: An expression that keeps track of the current number of repetitions in a repeated dialog. Each
time a new repetition is added, the COUNTER is increased.

custom interview: A script that controls how and the order in which variables and dialogs are asked
during an interview. The template developer creates this script.

D
database: A file that contains a collection of data. Template developers can map variables in templates to

fields in a database table so that answers can be retrieved from it and merged in the assembled
document.

Glossary

311

Database Connection: See HotDocs Database Connection.

date detection: The HotDocs setting that controls how HotDocs interprets and merges dates entered
during the interview—for example, whether the date appears as DAY MONTH YEAR (British), or
MONTH DAY YEAR (United States).

Date variable: A type of component that merges a date in the document.

DEBUG: An instruction developers can insert in a template or script that lets them troubleshoot problems
they are experiencing with their automation. While testing the script or template in debugging
mode, HotDocs walks the developer through it, step by step, so he or she can see exactly how the
script or template is producing the unexpected result.

default interview: The interview HotDocs automatically generates based on the order variables are asked
in the template.

default word processor: When multiple word processors (for example, Word and WordPerfect) or when
multiple versions of a single word processor (for example, Word 2000 and Word XP) are installed,
the word processor HotDocs uses by default for automation and document assembly.

delimiter: A character, such as a tilde (~) or vertical bar (|), that delineates answers or values in a script or
instruction.

descend: The process of sorting answers in reverse alphanumeric order, from 9 to 1, and from Z to A. (See
also ascend.)

detect: In a form template, the process of aligning a variable field with its surrounding field borders.

developer: See template developer.

dialog: In template development, represents the component in which the developer groups variables and
other components. In document assembly, represents the group of questions in the Interview tab
of the assembly window where users enter their answers.

dialog element: A component that lets developers more easily add additional text, hyperlinks, buttons,
graphics, lines, and spacing to dialogs. These can help make the dialog more visually pleasing and
informative.

direct-fill assembly: The process of entering answers directly at the Form Document tab of the assembly
window rather than answering questions at the Interview tab.

document: The file that is created after a template has been assembled.

document assembly: The process HotDocs goes through as it processes scripts in the template and
merges answers into the document. At the end of the assembly process, the user has a document
tailored to his or her needs.

document manager: A third-party application that stores various data files, including documents and
answer files. Using a document manager, users can track versions and show histories of the
document as well as enter other physical data about the files being stored, such as the date they
were created, who created them, and so forth.

Document Preview tab: A tab of the assembly window that shows how the text document has been
assembled using the answers entered in the interview. (See also Form Document tab and
Interview tab.)

double-angle bracket: See chevrons.

HotDocs API

312

duplicate: The process of copying a variable to create a new one.

E
Edit field: A type of form template field that is used for entering text, dates, and numbers. It is the most

commonly used type of field on a form.

ELSE IF / ELSE: See IF instruction.

End of Interview dialog: The last dialog displayed in an interview, which contains a report of the number
of questions that are still unanswered. It also provides options for working with the assembled
document.

example format: A predefined format for how an answer should look when it is merged in the assembled
document. This allows the user to enter the answer however they want in the interview, but forces
it to appear a specific way in the finished document.

explicit index: A reference to a specific answer in a list of answers. For example, to merge the third
answer from a list, a template developer would assign the index number of [3] to the variable that
is being merged, like this: «Service Date[3]». The third date in the list would then be merged.

expression: A command in a script that retrieves a special value. Expressions help calculate dates, sums,
and so forth.

F
field: A place in the template that denotes where users' answers should be merged, or where a specific

instruction should be executed. In a text template, a field is denoted by chevrons. In a form
template, a field is denoted by a colored box that is overlaid on the form's static text.

file name extension: Three characters appended to a file name that identify the type of file so Windows
knows what program to use to work with the file.

fill: The process of assembling a form document.

fillable field: In Adobe Acrobat or Reader, represents a dynamic field in which a user can enter data while
viewing the document. Using HotDocs, users can create fillable PDF templates from these PDF
documents that contain fillable fields.

Filler: See HotDocs Filler.

filter: A script that removes unrelated or unwanted answers from a list of answers. For example, perhaps
there is a list of a client's children but only the names of minor children should be merged. A filter
can extract just this data from the list.

fixed value: A predefined answer, such as a date, number, or string of text. When working with
instructions and expressions, placeholders are replaced either with fixed values or with variables.

foreign language DLL: A file that allows template developers and users to access Date variable and
Number variable formats in languages other than English. This allows these dates and numbers to
be formatted correctly in the assembled document. Supported languages include French, Spanish,
German, Swiss German, Austrian German, Dutch, and Italian.

form document: The file that is created from an assembled form template. Form documents are
distinguished from text documents by the design of the document—forms are static in nature,

Glossary

313

meaning the underlying text of the document cannot be changed or modified. (See also text
document.)

Form Document tab: A tab of the assembly window that shows how the form document has been
assembled using the answers entered in the interview. When viewing the Form Document tab,
users can enter or change their answers by clicking on the form fields and changing the answer.

form template: A template that is created and automated in HotDocs Automator. It is distinguished from
a text template by the fact that the underlying text cannot be modified because it is static. (See
also form document.)

format example: See example format.

H
HotDocs API: The HotDocs Application Programming Interface. It contains the functions you use to

integrate your application with HotDocs.

HotDocs Automator: The tool used to automate form templates, or those templates whose underlying
static text cannot be changed. Examples of form templates include tax preparation forms,
applications, and so forth.

HotDocs Compare: Starting with the release of HotDocs 2009, HotDocs Compare is no longer available. It
was a HotDocs add-in tool that is used to compare different versions of an assembled document.
Using HotDocs Compare, users could take a "snapshot" of an assembled document, change some
answers in the interview, and then compare the two versions.

HotDocs Database Connection: A tool that provides the mapping needed to connect templates to a
database. Answers can be retrieved from the database during the interview, which keeps users
from manually having to enter their answers. (Starting with the release of HotDocs 2008, HotDocs
Database Connection (the separate product) was fully integrated into all editions of HotDocs.)

HotDocs Filler: The application used to view assembled form documents.

HotDocs Options: A section of the software where template developers and end users can set their
preferences for working with HotDocs.

HotDocs PDF Advantage: A HotDocs add-in tool that allows the creation and automation of PDF-based
form templates. PDF Advantage can also be used to save most types of documents as PDF
(assembled or otherwise).

HotDocs Player Edition: A version of HotDocs that is used for assembling published (and registered)
templates.

HotDocs Professional Edition: A version of HotDocs, now known as HotDocs Developer, that contains
the tools necessary to automate a simple to highly complicated set of both text and form
templates. It is also used to assemble both text and form templates. (See also HotDocs Standard
Edition.)

HotDocs Server: The Web-based version of HotDocs. When using HotDocs Server, interviews are
presented in a user's Web browser. Answers are then sent back to a server where the document
can be assembled. HotDocs Server allows users to create documents and answer files without
requiring them to have HotDocs installed on their desktop.

HotDocs API

314

HotDocs Standard Edition: A version of HotDocs, now known as HotDocs Developer LE, that contains
the tools necessary to automate a simple to moderately complicated set of text templates.
HotDocs Standard can also be used to assemble text and form documents. (See also HotDocs
Professional Edition.)

HotDocs Variable Mapping dialog box: A tool in HotDocs that allows source fields to be mapped to
HotDocs variables.

I
IF instruction (also ELSE IF, ELSE, END IF): A set of instructions and expressions that control the

inclusion and exclusion of optional text in a document. IF instructions are based on either
True/False variables or true/false expressions. IF instructions can also be used to control whether
certain instructions or expressions are processed in computation or dialog scripts.

import: When working with libraries, the process of copying template files into the currently viewed
library. These files can be imported for assembly only or for editing and assembly. When working
with answer files, the process of copying an answer file to the default Answers folder and then
adding it to the answer library.

inactive field: A form document field on which the user cannot directly enter an answer. Fields can be
inactive for any number of reasons. For example, the field may be conditioned or it may contain a
Computation variable. Frequently, a template developer provides an answer wizard to help the
user answer all of the questions that will make the field active.

infinite loop: The process of a HotDocs script repeatedly reprocessing itself until HotDocs stops
responding. For example, a computation can repeatedly scan a text string, character by character,
for a specific value. As HotDocs searches for this value, it adds information to what is called the
processing stack. If too much information gets added to this stack, HotDocs may get into an
infinite loop and stop responding.

INSERT instruction: An instruction that inserts one template into another. For example, if boilerplate text
needs to be used in multiple documents, a template that contains that text can be created and
inserted in each template that requires it (via an INSERT instruction). This way, if changes need to
be made to the text, the change has to be made in only one template.

inserted dialog: See child dialog.

inserted template: A template that is inserted into another template using an INSERT instruction.

instant update: A command in the HotDocs assembly window that, when selected, updates the interview
every time a user enters or changes an answer in the interview. Sometimes this updating may
cause HotDocs to behave sluggishly as users move between answer fields. In such cases, the user
can turn the instant update command off. Then HotDocs will update the interview only as it needs
to.

instruction: A command in a script or template that performs a special task, such as inserting a template
or asking a dialog at a specific place in the interview.

intake interview: See interview template.

interview: A presentation of questions that must be answered in order to create an assembled document.
The interview is viewable by clicking the Interview tab of the assembly window.

Glossary

315

interview component: A computation script that defines how a custom interview will look and function.
An interview component usually includes ASK instructions to ask all of the dialogs/variables in the
interview. The script frequently includes other instructions, such as REPEAT instructions and
INSERT instructions as well as conditions for using these instructions. The name of this
component is defined at the Component File Properties dialog box.

interview outline: The leftmost pane of the assembly window that lists all of the dialogs in the interview.
Viewing the outline shows the natural progression of the interview. Icons in the outline also
indicate whether questions in the associated dialog are completely answered, partially answered,
or not answered at all.

Interview tab: A tab of the assembly window that shows the outline of questions in the interview as well
as the dialogs that contain the questions. Users enter answers while viewing the Interview tab.
(See also interview.)

interview template: A template that contains a series of interview questions designed to gather
information about a person (or persons) or matter. Answers are saved in an answer source file,
which can then be linked to a dialog in a template that requires the same information. Generally,
interview templates can be used to create a list of possible answers so users have more options to
choose from.

iteration: One instance of a repeated dialog.

J
JS files: Stands for JavaScript files, which are used to display interviews in a Web browser. When

templates are published for use with HotDocs Server, HotDocs generates these JavaScript files for
the interview.

K
keywords: A broad term used to describe scripting instructions, expressions, and operators. Keywords are

used in a script and generate values or perform certain tasks.

L
label: In a text template, an identification assigned to a REPEAT, IF, or SPAN instruction to help the

template developer identify the instruction in relation to other instructions in the template. In a
form document, the text that is merged in a field when an answer overflows and is sent to the
addendum. (See also reference.)

library: A window used to display and organize templates. The library does not store the actual files—
instead, it contains shortcuts (or links) to the files, which are stored on disk. In addition to the
template library, HotDocs also uses an answer library, which is more commonly known as Answer
File Manager.

line break: A code in a Word document that indicates that text should appear on a new line within the
same paragraph. For example, if the user must enter separate lines in a single paragraph (such as
lines in an address), a line break should be used. (See also paragraph mark.)

HotDocs API

316

linked field: Represents a HotDocs field in a fillable PDF template that is associated with an Adobe fillable
field. By creating this association between a HotDocs field and a fillable field, template developers
can create HotDocs fields that precisely match fields in the underlying PDF. Users who assemble
the document can then edit answers associated with linked/fillable fields in the saved PDF.

list: Two or more answers to one question merged in the document.

M
manual index: See explicit index.

map file: A file used to store the associations between source fields and HotDocs variables. Your
application will have one map file.

map, mapping: See variable mapping.

mark up, markup: The formatting applied to a Word template or an assembled Word document that
shows simplified template development marks. For example, when viewed in Markup View,
variables in a template appear between brackets rather than chevrons. (See also Markup View.)

Markup View: A view that shows a simplified version of a Word template or an assembled document.
This simplified view may be useful if a non-HotDocs user must review the template or document.
When viewing a template or document in Markup View, variable and answer fields are marked
using brackets.

merge field: During template development, the place in the template where a variable is inserted. During
document assembly, the place where the user's answer will be inserted.

merge text: The text that will be merged in a document if a user chooses a specific Multiple Choice
variable option. For example, if a user chooses Male as the option, a masculine pronoun such as
he or his can be merged instead of Male.

model: A tool in the script editor that template developers can use in writing scripts. A model shows the
full instruction or expression—including any placeholders that must be replaced for the script to
work correctly. Developers can drag these models from their respective lists and then replace the
placeholders with the appropriate values.

Multiple Choice variable: A type of component that merges a predefined answer in the document.

N
navigation bar: In an interview (at the Interview tab), the toolbar used to move from dialog to dialog. In a

document (at the Document tab), the toolbar used to move between merged answers in a
document.

non-breaking space / hyphen: A property that can be assigned to a variable that keeps the answer from
being split across two lines in the assembled document.

notation: An identification assigned to a variable name to help identify what type of variable it is. For
example, Client Name TE would indicate that the variable is a Text variable. (Typical component
notations include TE (Text), DA (Date), NU (Number), MC (Multiple Choice), TF (True/False), CO
(Computation), and DI (dialog).)

Number variable: A type of component that merges a numeric value in the document.

Glossary

317

O
ODBC: Short for Open Database Connectivity, it's a data presentation layer that lets HotDocs

communicate with a database so HotDocs can retrieve data from it and use it to assemble a
document. (See also ADO.)

operator: A symbol or word that causes either an operation (such as addition) or a comparison to be
performed in a computation script or expression.

order: The process of designating the sequence in which form template fields are asked in the tab order.
Establishing this order in a form is important for users who directly fill the form document.

outline: See interview outline.

overflow: Answers in a form document that do not fit in the allotted field space. Overflowing answers are
usually sent to the addendum.

overlay: The process of using the Overlay Answers command to merge existing answers into the current
answer file. When answers are overlaid, the answers become a part of the current answer file.
They also overwrite any existing answers in the interview.

P
paragraph mark: A code in a Word document that indicates that text following the mark should appear

in a new paragraph. (See also line break.)

parent dialog: A dialog that contains a child dialog.

pattern: Determines how a Text variable will be displayed and formatted in the interview and in the
assembled document. By default, HotDocs includes three patterns in all new templates (Social
Security number, telephone number, and time of day), but template developers can create custom
patterns.

PDF417: The two-dimensional bar code format used in HotDocs Automator and HotDocs Filler.

Personal Information variable: A type of component that stores basic information about a user, such as
a name, a company name, and a phone number. This information is saved in the Current User key
of the Windows System Registry. Once answered, users won't be prompted to enter it again.

pick list: See answer source.

placeholder: A marker in an instruction or expression model that indicates where a value must be
substituted. This value must be a literal value or a variable. Instruction and expression models
help the developer use the correct syntax in a script.

pointed component file: When sharing components across multiple templates, represents the template's
own component file, which, in turn, points to the shared component file.

pop-up interview: A dialog a user can display during an interview. Usually a pop-up interview shows a
different view of the dialog. For example, if a user is entering answers in a spreadsheet, he or she
can click the Edit RowEdit Row button and a pop-up interview appears that shows just the
questions (and answers) from that particular row in the spreadsheet.

processing stack: A sequential list of templates and components HotDocs is processing at any given
time. Each time a new component is processed, it is added to the stack. (Once processing is
finished, it is removed.) In some instances where recursion is used in a script, the same

HotDocs API

318

component is repeatedly added to the list. If the number of components exceeds the stack limit,
an infinite loop error will occur. (The stack limit can be changed at the Component File Properties
dialog box.)

prompt: Text that can be assigned to a variable to help the user better understand how to answer the
question.

punctuate: The process of formatting a REPEAT instruction so that a list of answers will appear in
sentence format, like this: The client owns real estate in New York, Pennsylvania, and Montana.
(New York, Pennsylvania, and Montana are the list items. The punctuation adds the commas and
the conjunction and).

Q
Question Summary: A brief report HotDocs generates that lists questions asked during an interview. The

summary includes blank lines for handwritten answers. (See also Answer Summary.)

queue: See Assembly Queue.

R
reference: In a form document, the text that is added to the addendum to identify any overflow answers.

(See also label.)

reference path: A folder path for a template in which the drive letter and some or all of the folder names
are represented by a keyword. At runtime, this keyword is mapped to an actual path on the user's
computer so that when the user accesses the template, the keyword is replaced by the path. This
allows templates saved in one central location to work on multiple workstations regardless of how
the drives on the workstation are mapped.

REPEAT instruction: An instruction that repeatedly asks the same variable(s) so that two or more answers
can be entered. REPEAT instructions are used to create lists of answers in the document.

repeated dialog: A dialog that contains the variables that need to be repeated so that multiple answers
can be entered. (See REPEAT instruction.)

repeated series dialog: One of two representations of a dialog that is repeated. With a repeated series,
the dialog is asked repeatedly until all answers in the list have been entered. (See also
spreadsheet dialog.)

resource: Supplemental help that can be included with a variable or dialog to help users better
understand how to answer the questions they are viewing. Resources appear in the resource pane
of the assembly window.

S
script: One or more instructions and/or expressions that generate a value or execute some kind of

procedure.

script editor: The tool used to write a script. The script editor includes several options to make the script-
writing process easier, including color-coding, auto-complete lists, and a toolbar for completing
other tasks.

Glossary

319

selection grouping: A dialog property assigned to True/False variables, clauses, and child dialogs which
presents these options as check boxes (multiple-select) or option buttons (single-select).

Send to Word Processor command: A command that opens the word processor and copies the
assembled document into it. Once opened in the word processor, the user can make any changes
necessary to the document.

SET instruction: An instruction in a template or script that assigns a value to a variable. Variables that
have their values set should not be asked again in the interview.

shared component file: A common component file to which several related templates are linked. To use
a shared component file, the template's own component file must be pointed to the shared file.
Changes to components in the file are reflected in all templates that use it. (See also pointed
component file.)

SHOW: An instruction used in a dialog script to show variables that have been hidden in the dialog. (See
also .) Usually this instruction is conditioned so that variables hide and show dynamically, based
on answers the user enters.

sort: The process of alphabetizing answers in a repeated list or items in a library. Sorting can be done in
ascending or descending order.

spreadsheet dialog: One representation of a repeated dialog. Each row in a spreadsheet represents one
repetition in a dialog. (See also repeated series dialog.)

static text: The underlying text in a form template or document that does not change. To enter answers
on a form, form fields must be created and overlaid on the static text.

strike-through field: A type of form template field that is used for crossing out static text on the form.

summary: See Question Summary and Answer Summary.

supplemental component: A term used to define components such as patterns, example formats, dialog
elements, and merge text. Supplemental components are associated with regular components,
but they can be created and edited as standalone components.

syntax: The language used in writing scripts. For a script to work properly, the script must be written in a
way that HotDocs can understand. This language consists of instructions, expressions, operators,
and values (such as text, numbers, dates, or answers users enter).

T
template: A word processor or form document that has been converted to HotDocs format so that it can

be automated. When in template format, changeable text in the template can be replaced with
variables. Other instructions can be added as well, such as instructions that create lists, condition
text, and insert other templates.

template developer: The person responsible for automating the templates in the set. The template
developer creates and inserts the variables in the template, arranges variables in dialogs, and
performs other custom tasks in the template. (See also user.)

template development: See automate, automation.

test: The process of testing a variable or other component to make sure it looks right and works correctly.

HotDocs API

320

test assemble: The process of assembling a document for the purpose of ensuring the interview works
correctly and the automation within the template produces a correctly assembled document.
During a test assembly, developers can easily edit components and have the test assembly
window updated with changes.

text document: A document that is viewed in either Word or WordPerfect. It can represent a document
before it is automated as well as a document after it has been assembled. When in document
format, it is not associated with (or linked to) HotDocs in any way. (See also text template.)

text template: A template that is created and automated in Microsoft Word or WordPerfect. It is
distinguished from a form template by the fact that the underlying text of the template can be
modified. (See also text document.)

Text variable: A type of component that merges text in the document.

title: A property of a variable or dialog that specifies a more user-friendly name for the component. For
example, if project standards require components be named using notations, names like
Employee Name TE may not make sense to a user. However a title like Employee Name can be
used instead.

True/False expression: A script that must result in either true or false. Expressions are used for merging
or excluding optional text in a document. They are also used for determining which parts of a
script will be executed, based on answers or other values entered by a user. Expressions are often
used when a simple True/False variable doesn't convey the condition needed. (See IF Instruction.)

True/False variable: A type of component that determines a true/false status of some condition and then
merges the appropriate answer or text.

U
unanswered text: Text in a text document that indicates that a question is unanswered. By default,

unanswered questions appear as ***Variable Name***, but this can be customized.

Unicode: Computer specification that makes it possible for computers to represent and manipulate
characters used in most of the world’s written languages. Unicode support in HotDocs makes it
possible to automate and assemble documents in non-native, left-to-right-reading languages.
This includes automating and assembling Microsoft Word templates as well as PDF-based form
templates.

user: The customer, client, or person who assembles documents from templates. (See also template
developer.)

V
value: In an interview, it represents a user's answer. In a script, it represents data that must be used in

executing the script. (The value can either be a literal value or a user's answer.)

variable: A component that is used to represent changeable text (such as names, dates, numbers, etc.) in
the template. Types of variables include Text, Date, Number, True/False, Multiple Choice,
Computation, and Personal Information.

variable flow-through: See answer sharing.

Glossary

321

variable mapping: The process of associating two HotDocs variables so that they can share answers. In
some cases, this mapping defines the relationship between a HotDocs variable and a field in a
third-party application file, such as a database table or a field in an Outlook Contacts list.

X
XML: Stands for eXtensible Markup Language. It is a computer language designed to store and transmit

data between applications. Like HTML (HyperText Markup Language), it contains customized
markers, or tags, that identify the information in an XML file. However, while HTML describes the
way a page looks, XML controls the way data is structured, making it easy for diverse programs to
access the same information. (For example, in HTML, to indicate a book title, you would italicize it
using the <i> tag. In XML, you could mark the title using a <booktitle> tag. The HTML tag simply
formats the text (making it italic), while the XML tag actually defines what the text is (a book
title).) In HotDocs, you can save libraries, component files, and answer files in XML format.

323

Index
/

/af ... 22

/as .. 22

/cl ... 23

/da ... 23

/db ... 24

/df .. 23

/ed ... 24

/ex .. 24

/fia ... 24

/ha ... 25

/hi ... 25

/hl ... 25

/if 26

/is=u.. 26

/kig .. 27

/la ... 28

/lf 27

/ll 28

/mo .. 26

/na ... 28

/ni ... 29

/nw .. 29

/nx ... 29

/of .. 30

/ov ... 30

/pa ... 32

/pb .. 33

/pc ... 33

/pd .. 33

/po .. 34

/pr ... 32

/ps ... 31

/pt ... 31

/pw .. 34

/qs ... 34

/regserver ... 35

/sa ... 35

/sap ... 35

/si ... 38

/sig .. 37

/sl ... 36

/ss .. 37

/ssn ... 38

/sto ... 36

/stw ... 36

HotDocs API

324

/sw ... 38

/tf ... 39

/unregserver .. 39

A

About

command-line options ... 13

Adding

assemblies to assembly queue 161, 162

assemblies to assembly queue at indexed
position ... 163

custom menus to assembly window interface
 .. 138

custom menus to library interface 101, 102

folders to a library ... 201

Multiple Choice values to a Multiple Choice
variable ... 68

new answers to AnswerCollection...................... 85

templates to a library ... 202

Answer event notifications, firing when finding
values for answers .. 80

Answer File command-line option 22

Answer files (answer collections)

closing after using .. 86

determining format (XML or ANS) for 92

overlaying .. 88

prompting to save after assembly 148

retrieving answer from ... 87

saving .. 88

uploading to a server.. 89

using as default ... 91

Answer object

about ... 65

events .. 80

methods 68, 69, 70, 71, 72, 73, 75

properties ...76, 77, 78, 80

Answer Source API

about ... 235, 241

entry points .. 243

Answer source integrations

about ... 235

creating .. 241

functions 246, 247, 248, 249, 250, 252, 254,
255, 256, 257, 258, 259, 260, 261, 262

Answer Summaries, saving to specific location
 ... 145

Answer Summary command-line option 22

AnswerCollection object

about ... 82

initializing .. 86

methods .. 85, 86, 87, 88, 89

properties 90, 91, 92, 93, 94, 95

Index

325

Answers

adding to an answer collection 85

creating new ... 69

determining if marked unanswered 78

returning names of ... 76

returning types of ... 77

suppressing warnings if unanswered 150

working with ... 65

API

about .. 11

answer source.. 235, 243

description ... 11

using Help file .. 1

Application event notifications

firing when assembly completes 129, 130

firing when assembly starts 130

firing when error occurs 131

firing when user closes library 131

firing when user opens library 132

firing when user selects menu options at
library ... 133

firing when user selects options at library ... 132

firing when user selects template(s) for
assembly ... 132

Application object

about ... 96

enumerations for ... 57, 58

events 129, 130, 131, 132, 133

methods 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 118,
119, 121

properties 122, 123, 124, 125, 126, 127, 128,
129

Asking

only unanswered questions 26

Assembled documents, printing 110

Assemblies

adding a single assembly to queue 161

adding at certain location in assembly queue
 .. 163

adding multiple assemblies to queue 162

automatically printing after complete 147

choosing a single template for 118, 119

choosing multiple templates for 115, 116

clearing from queue .. 163

counting number of in queue 165

maintaining reference to answer collection
during ... 144

moving queued ... 164

printing documents from 110

removing from assembly queue 165

returning object for current 122

HotDocs API

326

showing completed in assembly queue 147

Assembly event notifications

answer file saved .. 159, 160

answers needed .. 156

assembly completed ... 151

assembly started .. 151

assembly window closed 152

document file saved 156, 157

errors during assembly .. 152

user chooses custom menu option 159

user chooses interface options......................... 158

Assembly object

about ... 133

enumerations for... 49, 51

events 151, 152, 153, 154, 155, 156, 157, 158,
159, 160

methods 138, 139, 140, 141, 142, 143, 144

properties 144, 145, 146, 147, 148, 149, 150,
151

Assembly queue

adding assemblies to 161, 162

moving assemblies within 164

removing assemblies from 165

returning count of assemblies in 165

returning list of assemblies in 123

showing .. 124

showing completed assemblies in 147

AssemblyCollectionClass object

about ... 160

methods 161, 162, 163, 164, 165

properties .. 165

C

Choosing

a single template for assembly 118, 119

multiple templates for assembly 115, 116

Clause Name command-line option 23

Closing

answer file after using .. 86

library .. 196

COM Events

about ... 44

programming in Visual C#.................................... 47

COM objects ... 65, 82, 96, 133, 160, 166, 174, 183,
186, 188, 190, 192, 195, 200, 206, 210, 214, 218

Command-line options

about ... 13

Answer File .. 22

Answer Summary ... 22

Clause Name .. 23

Default Answer File .. 23

Index

327

Discard Answers .. 23

Don't Brag .. 24

Edit Template.. 24

Exit HotDocs.. 24

Finish Interview Action .. 24

full list of ... 14

Hide Library ... 25

HotDocs Auto-Assemble File 25

HotDocs Auto-Install File 25

HotDocs Model.. 26

Installation File ... 26

Interview Scope ... 26

Keep Interview Scope .. 27

Library File.. 27

Lock Answer File .. 28

Lock Library ... 28

New Answer File .. 28

No Assembly Window ... 29

No Exit ... 29

No Interview .. 29

Output File ... 30

Overlay Answer File .. 30

Paper Size... 31

Paper Tray .. 31

Print ... 32

Print Answers Only .. 32

Print Both ... 33

Print Copies .. 33

Print Duplex .. 33

Print Form Only ... 34

Print Without Dialogs ... 34

Question Summary .. 34

Register .. 35

Save Answers ... 35

Save Answers Prompt ... 35

Send to Plugin ... 36

Send to Word Processor.. 36

Show Library ... 36

Start Interview Group ... 37

Suggest Save .. 37

Suggest Save New ... 38

Suppress Installation ... 38

Suppress Unanswered Warning 38

Template File .. 39

Unregister .. 39

Component files (component collections)

creating new, empty ... 176

creating variables in .. 178

HotDocs API

328

finding number of components in 181

opening .. 180

retrieving components from 179

returning file location for 182

Component object

about ... 166

methods ... 167

properties 167, 168, 169, 170, 171, 172, 173

ComponentCollection object

about ... 174

methods 176, 177, 178, 179, 180

properties ... 181, 182, 183

ComponentProperties object

about ... 183

methods ... 184, 185

properties .. 185

ComponentProperty object

about ... 186

properties .. 186, 187

Components

creating in component file 178

enumeration for types of 64

finding dialogs linked to 168

finding name of .. 170

finding number of in collection 181

finding prompt for ... 171

identifying resources for 169

identifying type of.. 172

linking to database fields 168

Connection point .. 44

Contacting

technical support .. 303

Copyright .. 3

Counting

answers in a collection ... 90

number of assemblies in queue 165

number of components in collection 181

repeated values ... 70

Creating

AnswerCollection object 144

new answers ... 69

new library .. 196

new, empty component file 176

variables in a component file 178

Customizing

assembly window menus 138

library menus 101, 102, 106

Index

329

D

Database, linking variables in templates to fields
in ... 168

Default Answer File command-line option 23

Default answer files, using ... 91

Deleting

assemblies from the assembly queue............ 165

custom assembly window menu items 139

custom library menu items 106

items from the library ... 203

Dependency object

about ... 188

properties .. 189

DependencyCollection object

about ... 190

methods ... 191

properties .. 191

Disabling application features in integration .. 143

Discard Answers command-line option 23

Documentation Feedback 305

E

Edit Template command-line option 24

Editions of HotDocs, determining which is being
used ... 126

Enumerations48, 49, 50, 51, 57, 58, 62, 63, 64

for assembly window interface 51

for assembly window menus 49

for library interface .. 58

for library menus .. 57

for variable types .. 64

Event sink ... 44

Events . 80, 129, 130, 131, 132, 133, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160

Example scripts

creating an Application object 41

Exit HotDocs command-line option 24

F

Features, new and enhanced 5, 7, 8, 9, 10

Feedback, providing .. 305

File locations

returning for answer files 93

returning for component files 182

returning for templates .. 150

specifying for answer files 88

specifying for answer summaries 145

specifying for question summaries 148

Finish Interview Action command-line option .. 24

G

Garbage collection ... 42

HotDocs API

330

H

Handles

returning for assembly window interface 145

returning for library interface 127

Help file

get help using .. 1

Hide Library command-line option 25

HotDocs

contacting ... 303

HotDocs API

about .. 11

HotDocs Auto-Assemble File command-line
option .. 25

HotDocs Auto-Install File command-line option
 .. 25

HotDocs editions, determining which is being
used ... 126

HotDocs Model command-line option 26

HotDocs plug-ins

about ... 265

HotDocs Plug-ins

creating .. 266

creating using Visual C++ 267

HotDocs Server, publishing files for.......... 110, 111

How To's

creating the HotDocs Application object 41

I

Icon object

about ... 192

methods ... 193

properties .. 194

Identifying

assembly window using handle........................ 145

library window using handle.............................. 127

ILibraryWindowContextMenuExtension Interface

about ... 270

functions272, 273, 274, 275

ILibraryWindowFileHandlerExtension Interface

about ... 276

functions .. 278, 280, 281

ILibraryWindowIconProvider Interface

about ... 283

functions .. 284, 285

ILibraryWindowMenuExtension Interface

about ... 286

functions289, 290, 292, 293

Indexes, finding for assemblies 163

Initializing AnswerCollection object 86

Install File command-line option 26

Integration, people involved in 11

Index

331

Interface (GUI)

changing for assembly window 51

changing for library window 58

disabling or enabling features of assembly
window .. 143

disabling or enabling features of library
window .. 121

Interview Scope command-line option 26

IOutputPlugin Interface

about ... 293

functions ... 296, 298, 299

properties .. 299

IPluginPreferences Interface

about ... 300

functions .. 302

Iterating values for answers 73

J

JavaScript files

building for HotDocs Server interviews 110,
111

K

Keep Interview Group command-line option 27

L

Libraries

adding folders to ... 201

adding templates to ... 202

assigning descriptions to 204

assigning titles to ... 199

closing... 196

creating new ... 196

opening .. 197

returning root folder in .. 199

returning specified item 203

saving .. 198

Library File command-line option 27

Library object

about ... 195

methods ... 196, 197, 198

properties .. 198, 199

LibraryEntity object

about ... 200

methods ... 201, 202, 203

properties203, 204, 205, 206

Lock Answer File command-line option 28

Lock Library command-line option 28

M

Mapping

about ... 218

adding new items to variable collection 221

adding new source names to SourceNames
collection ... 228

HotDocs API

332

associating variables with source names in
integration ... 222, 223

counting items in mapping 232

counting items in variable collection 232

counting source names in SourceNames
collection .. 233

opening a HotDocs map file 226

opening component file 226

removing mapping from a variable collection
 .. 225

removing mapping from SourceNames
collection .. 230

retrieving items from variable collection 221

retrieving source name and type from
SourceNames collection 229, 230

retrieving variable name and source name
from collection ... 224, 225

saving map file to specific location 226

showing interface for ... 227

Menus

customizing for assembly window 138

customizing for library 101, 102, 106

enumeration (for assembly window) 49

enumeration (for library) .. 57

Moving assemblies within the assembly queue
 ... 164

Multiple Choice variables, adding options to 68

N

New Answer File command-line option 28

No Assembly Window command-line option ... 29

No Exit command-line option 29

No Interview command-line option 29

O

Objects 65, 82, 96, 133, 160, 166, 174, 183, 186,
188, 190, 192, 195, 200, 206, 210, 214, 218

Opening

a component file .. 180

a library file ... 197

libraries for Application object 109

modal library to show templates 115, 116

Output File command-line option 30

Overlay Answer File command-line option 30

Overlaying answer files ... 88

P

Paper Size command-line option 31

Paper Tray command-line option 31

Passive answer source integration 235, 243

PDFs, saving documents as 114

Plugin object

about ... 206

properties207, 208, 209, 210

Plug-ins

Index

333

about ... 265

creating .. 266

description .. 265

file handler .. 276

menu bar ... 286

shortcut menu ... 270

PluginsClass object

about ... 210

methods .. 211, 212, 213

properties .. 214

Print Answers Only command-line option 32

Print Both command-line option 33

Print command-line option 32

Print Copies command-line option 33

Print Duplex command-line option........................ 33

Print Form Only command-line option 34

Print Without Dialogs command-line option 34

Printing

automatically when assembly completes 147

documents .. 110

Prompting to save answers after assembly 148

Publishing files for use with HotDocs Server . 110,
111

Q

Question summaries, specifying file location
where saved.. 148

Question Summary command-line option 34

R

Recurse values for an answer 73

Register command-line option 35

Removing

assemblies from the assembly queue 165

custom assembly window menu items 139

custom library menu items 106

items from the library ... 203

Repeat indexes

finding... 71

finding the value for the current 78

returning .. 71

setting answers using ... 75

Repeated values

counting ... 71

indexing ... 71

returning the count of .. 77

Retrieving

answers from an answer file 87

components from a component file 179

Returning

HotDocs API

334

answer types ... 77

component file names ... 182

current assembly object 122

file system path for current template library
 .. 126

names of answers ... 76

number of answers in a collection 90

number of repeated answers 77

objects in assembly queue 123

repeat indexes .. 71

specified item in library 203

window handles for assembly window
interface .. 146

window handles for library interface.............. 146

S

Save Answers command-line option 35

Save Answers Prompt command-line option 35

Saving

a library .. 198

answers in an AnswerCollection 88

answers using a prompt 148

document to PDF file ... 114

question summaries to specific location 148

Send to Plugin command-line option 36

Send to Word Processor command-line option
 .. 36

Sending assembled document to word
processor ... 121

Setting

command-line options for use in assembly
window .. 145

command-line options for use in library 125

current values to those specified at repeat
index ... 75

Show Library command-line option 36

Start Interview Group command-line option 37

Status, determining for the assembly object ... 149

Suggest Save command-line option 37

Suggest Save New command-line option 38

Support

contacting ... 303

Suppress Installation command-line option 38

Suppress Unanswered Warning command-line
option ... 38

Switches, full list of command-line 14

T

Technical Support ... 303

Template File command-line option 39

Template library

descriptions for templates in 150

returning path for .. 126

selecting a single template from 118, 119

Index

335

selecting multiple templates from 115, 116

TemplateInfo object

about ... 214

methods ... 216

properties ... 216, 217, 218

Templates

adding to Assembly Queue 161, 162

assigning descriptions to 150

assigning file paths for .. 150

assigning titles to ... 151

U

Unanswered variables

asking only... 26

Unansweredness

determining ... 78

suppressing warnings for 150

Underlaying answers in a collection 91

Unregister command-line option 39

Uploading answer collections to a URL 89

User interface

enumeration for assembly window 51

enumeration for library .. 58

manipulating .. 121

visible status of assembly window 151

visible status of library window 129

V

Variable mapping

allowing users to merge from multiple map
files .. 42

controlling which object is used in assembly
 .. 147

linking variables to database fields 168

mapping fields in integration to variables 42

Variables

enumeration for types of 64

finding dialogs linked to 168

finding name of .. 170

finding prompt for ... 171

identifying resources for 169

identifying type of.. 172

linking to database fields 168

returning for types ... 77

VarMap object

about ... 218

methods 221, 222, 223, 224, 225, 226, 227, 228,
229, 230

properties .. 231, 232, 233

Versioning .. 128

Visual C#

programming COM events in 47

HotDocs API

336

W

Warning, suppressing if questions in interview
unanswered .. 150

Window handles

returning for assembly window interface 146

returning for library interface 127

X

XML Answer sets, specifying format for 92

	Help Topics for the HotDocs Application Programming Interface (API)
	Organization of the Help File
	Find Topics in the Help File
	Other Help Resources

	Copyright Information
	Copyright
	Warranty Information
	Government Use
	Trademark Information

	New Features and Enhancements
	New and Enhanced Features in the HotDocs 11 API
	HotDocs 11
	New Features
	Command-Line options
	COM API
	Plugins

	New and Enhanced Features in the HotDocs 10 API
	HotDocs 10
	HotDocs 10.1

	New and Enhanced Features in the HotDocs 2009 API
	HotDocs 2009

	New and Enhanced Features in the HotDocs 2008 API
	HotDocs 2008

	New and Enhanced Features in the HotDocs 2007 API
	HotDocs 2007

	New and Enhanced Features in the HotDocs 2006 API
	HotDocs 2006

	New and Enhanced Features in the HotDocs 2005 API
	HotDocs 2005
	HotDocs 2005 SP2

	New and Enhanced Features in the HotDocs 6.2 API
	HotDocs 6.2 SP1

	New and Enhanced Features in the HotDocs 6.1 API
	HotDocs 6.1
	HotDocs 6.1 SP1

	About the HotDocs API
	What is the HotDocs API?
	Integration Types

	Using Command-Line Options
	Introduction: Command-Line Options
	To use command-line options when starting HotDocs
	To use command-line options when using a shortcut to start HotDocs
	To use command-line options within ASSEMBLE instructions
	To add command-line options to a library item

	Full List of Command-Line Options
	Installation Switches
	Application Control Switches
	Template Type Switches
	Answer Initialization Switches
	Interview Behavior Switches
	Answer Disposition Switches
	Document Disposition Switches
	Automator/Filler Command Line Switches

	Use Command-Line Options When Starting HotDocs
	To use command-line options when starting HotDocs

	Use Command-Line Options when Using a Shortcut to Start HotDocs
	To use command-line options when using a shortcut to start HotDocs

	Use Command-Line Options within ASSEMBLE Instructions
	To use command-line options within ASSEMBLE instructions

	Use Command-Line Options at File Properties
	To add command-line options to a library item

	Answer File
	Answer Summary
	Clause Name
	Default Answer File
	Discard Answers
	Don't Brag
	Edit Template
	Exit HotDocs
	Finish Interview Action
	Hide Library
	HotDocs Auto-Assemble File
	HotDocs Auto-Install File
	HotDocs Model
	Installation File
	Interview Scope
	Keep Interview Group
	Library File
	Lock Answer File
	Lock Library
	New Answer File
	No Assembly Window
	No Exit
	No Interview
	Output File
	Overlay Answer File
	Paper Size
	Paper Tray
	Print
	Print Answers Only
	Print Both
	Print Copies
	Print Duplex
	Print Form Only
	Print Without Dialogs
	Question Summary
	Register
	Save Answers
	Save Answers Prompt
	Send to Plugin
	Send to Word Processor
	Show Library
	Start Interview Group
	Suggest Save
	Suggest Save New
	Suppress Installation
	Suppress Unanswered Warning
	Template File
	Unregister

	COM API
	About the HotDocs COM API
	About the HotDocs COM API
	Example
	COM Interface
	Using the HotDocs COM API

	How do I use the HotDocs COM API in .NET?
	To force a garbage collection call

	How do I use the HotDocs Variable Mapping API?
	Understand COM Events
	Answer Events
	Application Events
	Assembly Events

	How do I program a COM Event in Visual C#?

	Enumerations
	DependencyType Enumeration
	HotDocs Directories

	HDAFFORMAT Enumeration
	Answer File Formats

	HDAIMENU Enumeration
	Assembly Window Menus

	HDANSWERUPLOADFORMAT Enumeration
	Uploaded Answer Formats

	HDASSEMBLYSTATUS Enumeration
	Status

	HDAUI Enumeration
	Menus
	Tabs and Toolbars
	End of Interview Dialog
	File Menu
	View Menu
	Tools Menu
	Help Menu

	HDDirectory Enumeration
	HotDocs Directories

	HDLIMENU Enumeration
	HDLUI Enumeration
	Tabs, Toolbars, and Context Menu
	File Menu
	Edit Menu
	View Menu
	Template Menu
	Tools Menu
	Help Menu

	HDMappingBackfill Enumeration
	Backfill Modes

	HDOUTPUTTYPE Enumeration
	Document Type

	HDPRODUCTFLAVOR Enumeration
	Product Flavors

	HDServerFileType Enumeration
	HDVARTYPE Enumeration

	HotDocs.Answer Object
	HotDocs.Answer Object
	General Information
	Methods
	Properties
	Events
	Example

	Answer.AddMultipleChoiceValue Method
	Syntax
	Example

	Answer.ClearAskedFlag Method
	Syntax

	Answer.Create Method
	Syntax
	Example

	Answer.GetRepeatCount Method
	Syntax
	Return Value
	Example

	Answer.GetRepeatIndex Method
	Syntax
	Example

	Answer.IsMultipleChoiceValueSet Method
	Syntax
	Return Value
	Example

	Answer.IterateValues Method
	Syntax
	Example

	Answer.SetRepeatIndex Method
	Syntax
	Example

	Answer.Application Property
	Syntax

	Answer.Name Property
	Syntax

	Answer.RepeatCount Property
	Syntax

	Answer.Type Property
	Syntax

	Answer.Unanswered Property
	Syntax

	Answer.Value Property
	Syntax
	Example (Visual C#)

	Answer.OnValueFoundEvent Event
	Syntax
	Example

	HotDocs.AnswerCollection Object
	HotDocs.AnswerCollection Object
	General Information
	Methods
	Properties
	Example

	AnswerCollection.Add Method
	Syntax
	Example

	AnswerCollection.Close Method
	Syntax
	Example

	AnswerCollection.Create Method
	Syntax
	Example

	AnswerCollection.Item Method
	Syntax
	Return Value

	AnswerCollection.Overlay Method
	Syntax
	Return Value

	AnswerCollection.Save Method
	Syntax
	Example

	AnswerCollection.UploadAnswerCollection Method
	Syntax

	AnswerCollection.Application Property
	Syntax

	AnswerCollection.Count Property
	Syntax
	Example

	AnswerCollection.DefaultAnswerFile Property
	Syntax

	AnswerCollection.Description Property
	Syntax
	Example

	AnswerCollection.FileFormat Property
	Syntax
	Example

	AnswerCollection.FileName Property
	Syntax
	Example

	AnswerCollection.Modified Property
	Syntax
	Example

	AnswerCollection.Title Property
	Syntax
	Example

	AnswerCollection.XML Property
	Syntax
	Example

	HotDocs.Application Object
	HotDocs.Application Object
	General information
	Methods
	Properties
	Events

	Application.AddUserMenuItem Method
	Syntax
	Return Value
	Example

	Application.AddUserMenuItem2 Method
	Syntax
	Return Value
	Example

	Application.ConvertModelToTemplate Method
	Syntax
	Example

	Application.ConvertTemplateToModel Method
	Syntax
	Example

	Application.CreateTemplatePackage Method
	Syntax
	Example

	Application.DeleteUserMenuItem Method
	Syntax
	Example

	Application.getDefaultPath Method
	Syntax
	Return Value
	Example

	Application.GetHotDocsSetting Method
	Syntax
	Return Value
	Example (Visual C#)

	Application.OpenLibrary Method
	Syntax
	Example

	Application.PrintDocument Method
	Syntax
	Example

	Application.PublishOnlineFiles Method
	Syntax
	Example

	Application.PublishOnlineFiles2 Method
	Syntax
	Example

	Application.ResolveReferencePath Method
	Syntax
	Return Value
	Example

	Application.RetrieveUrlFile Method
	Syntax
	Example

	Application.SaveDocAsPDF Method
	Syntax
	Example

	Application.SelectMultipleTemplates Method
	Syntax
	Example (Visual C#)

	Application.SelectMultipleTemplates2 Method
	Syntax
	Example (Visual C#)

	Application.SelectTemplate Method
	Syntax
	Example

	Application.SelectTemplate2 Method
	Syntax
	Example

	Application.SendToWordProcessor Method
	Syntax
	Example

	Application.SetUserInterfaceItem Method
	Syntax
	Example

	Application.ActiveAssembly Property
	Syntax
	Example

	Application.Assemblies Property
	Syntax
	Example

	Application.AssemblyQueueVisible Property
	Syntax
	Example

	Application.CanAssembleAll Property
	Syntax

	Application.CanEditTemplates Property
	Syntax

	Application.CommandLine Property
	Syntax
	Example

	Application.CurrentLibraryPath Property
	Syntax
	Example

	Application.Flavor Property
	Syntax
	Example

	Application.Hwnd Property
	Syntax
	Example

	Application.Plugins Property
	Syntax

	Application.Version Property
	Syntax
	Example

	Application.Visible Property
	Syntax
	Example

	Application.AssemblyCompleteEvent Event
	Syntax

	Application.OnAssemblyCompleteEvent Event
	Syntax

	Application.OnAssemblyStartEvent Event
	Syntax

	Application.OnErrorEvent Event
	Syntax

	Application.OnLibraryInterfaceCloseEvent Event
	Syntax

	Application.OnLibraryOpenEvent Event
	Syntax

	Application.OnTemplateSelectedEvent Event
	Syntax

	Application.OnUserInterfaceEvent Event
	Syntax

	Application.OnUserMenuItemClickedEvent Event
	Syntax

	HotDocs.Assembly Object
	HotDocs.Assembly Object
	General Information
	Methods
	Properties
	Events

	Assembly.AddUserMenuItem Method
	Syntax
	Example

	Assembly.DeleteUserMenuItem Method
	Syntax
	Example

	Assembly.GetSaveAsExtDlg Method
	Syntax
	Example

	Assembly.LocalBrowseDlg Method
	Syntax

	Assembly.OpenAnswerFileDlg Method
	Syntax
	Example

	Assembly.SelectOpenAnswerFileDlg Method
	Syntax
	Example

	Assembly.SendToWordProcessor Method
	Syntax

	Assembly.SetUserInterfaceItem Method
	Syntax
	Example

	Assembly.UseAnswerFile Method
	Syntax
	Example

	Assembly.AnswerCollection Property
	Syntax

	Assembly.AnswerSummaryPath Property
	Syntax

	Assembly.Application Property
	Syntax

	Assembly.AssemblyHandle Property
	Syntax

	Assembly.CommandLine Property
	Syntax
	Example

	Assembly.DocumentPath Property
	Syntax

	Assembly.Hwnd Property
	Syntax

	Assembly.KeepInQueue Property
	Syntax

	Assembly.Map Property
	Syntax

	Assembly.PrintwhenComplete Property
	Syntax

	Assembly.PromptToSaveDocument Property
	Syntax

	Assembly.QuestionSummaryPath Property
	Syntax

	Assembly.ShowAnswerFileDialog Property
	Syntax

	Assembly.Status Property
	Syntax
	Example

	Assembly.SuppressUnansweredWarning Property
	Syntax

	Assembly.TemplateDesc Property
	Syntax

	Assembly.TemplatePath Property
	Syntax

	Assembly.TemplateTitle Property
	Syntax

	Assembly.Visible Property
	Syntax

	Assembly.OnAssemblyCompleteEvent Event
	Syntax

	Assembly.OnAssemblyStartEvent Event
	Syntax

	Assembly.OnCanOpenFile Event
	Syntax
	Return Value

	Assembly.OnCloseAssemblyInterfaceEvent Event
	Syntax

	Assembly.OnErrorEvent Event
	Syntax

	Assembly.OnFileOpen Event
	Syntax

	Assembly.OnFileSave Event
	Syntax

	Assembly.OnFileSelectEvent Event
	Syntax

	Assembly.OnGetAnswerFileDisplayName Event
	Syntax

	Assembly.OnGetMRUInfo Event
	Syntax

	Assembly.OnNeedAnswerEvent Event
	Syntax

	Assembly.OnPostCloseAnswerFile Event
	Syntax

	Assembly.OnPostSaveDocumentEvent Event
	Syntax

	Assembly.OnPreCloseAnswerFile Event
	Syntax

	Assembly.OnPreSaveDocumentEvent Event
	Syntax

	Assembly.OnUserInterfaceEvent Event
	Syntax

	Assembly.OnUserMenuItemClickedEvent Event
	Syntax

	Assembly.PostSaveAnswersEvent Event
	Syntax

	Assembly.PreSaveAnswersEvent Event
	Syntax

	HotDocs.AssemblyCollectionClass Object
	HotDocs.AssemblyCollectionClass Object
	General Information
	Methods
	Properties

	AssemblyCollectionClass.Add Method
	Syntax
	Return Value

	AssemblyCollectionClass.AddToQueue Method
	Syntax
	Return Value

	AssemblyCollectionClass.Clear Method
	Syntax

	AssemblyCollectionClass.FindByHandle Method
	Syntax
	Return Value

	AssemblyCollectionClass.Insert Method
	Syntax
	Return Value

	AssemblyCollectionClass.Item Method
	Syntax
	Return Value

	AssemblyCollectionClass.Move Method
	Syntax

	AssemblyCollectionClass.Remove Method
	Syntax

	AssemblyCollectionClass.Application Property
	Syntax

	AssemblyCollectionClass.Count Property
	Syntax

	HotDocs.Component Object
	HotDocs.Component Object
	General Information
	Methods
	Properties

	Component.DisplayEditor Method
	Syntax

	Component.Application Property
	Syntax

	Component.DBName Property
	Syntax
	Example

	Component.DialogName Property
	Syntax
	Example

	Component.HelpText Property
	Syntax
	Example

	Component.Name Property
	Syntax
	Example

	Component.Prompt Property
	Syntax
	Example

	Component.Properties Property
	Syntax

	Component.Type Property
	Syntax
	Example

	Component.Title Property
	Syntax
	Example

	HotDocs.ComponentCollection Object
	HotDocs.ComponentCollection Object
	General Information
	Methods
	Properties

	ComponentCollection.Create Method
	Syntax
	Example

	ComponentCollection.CreateComponent Method
	Syntax
	Example

	ComponentCollection.CreateVariable Method
	Syntax
	Example

	ComponentCollection.Item Method
	Syntax
	Return Value

	ComponentCollection.Open Method
	Syntax

	ComponentCollection.OpenBase Method
	Syntax

	ComponentCollection.OpenForEdit Method
	Syntax

	ComponentCollection.Application Property
	Syntax

	ComponentCollection.Count Property
	Syntax
	Example

	ComponentCollection.FileName Property
	Syntax

	ComponentCollection.OnlyVariables Property
	Syntax

	ComponentCollection.ReadOnly Property
	Syntax

	HotDocs.ComponentProperties Object
	HotDocs.ComponentProperties Object
	General Information
	Methods
	Properties

	ComponentProperties.Add Method
	Syntax

	ComponentProperties.Item Method
	Syntax
	Return Value

	ComponentProperties.Count Property
	Syntax

	HotDocs.ComponentProperty Object
	HotDocs.ComponentProperty Object
	General Information
	Properties

	ComponentProperty.Name Property
	Syntax

	ComponentProperty.ReadOnly Property
	Syntax

	ComponentProperty.Value Property
	Syntax

	ComponentProperty.VariantType Property
	Syntax
	Return Value

	HotDocs.Dependency Object
	HotDocs.Dependency Object
	General Information
	Properties

	Dependency.Dependencies Property
	Syntax

	Dependency.DependencyType Property
	Syntax

	Dependency.Target Property
	Syntax

	HotDocs.DependencyCollection Object
	HotDocs.DependencyCollection Object
	General Information
	Methods
	Properties

	DependencyCollection.GetEnumerator Method
	Syntax

	DependencyCollection.Item Method
	Syntax

	DependencyCollection.Count Property
	Syntax

	HotDocs.Icon Object
	HotDocs.Icon Object
	General Information
	Methods
	Properties

	Icon.LoadBitmap Method
	Syntax

	Icon.LoadIcon Method
	Syntax
	Example

	Icon.HBITMAP Property
	Syntax

	Icon.HICON Property
	Syntax

	Icon.index Property
	Syntax

	Icon.maskColor Property
	Syntax

	HotDocs.Library Object
	HotDocs.Library Object
	General Information
	Methods
	Properties

	Library.Close Method
	Syntax

	Library.New Method
	Syntax

	Library.Open Method
	Syntax

	Library.Save Method
	Syntax

	Library.Application Property
	Syntax

	Library.Description Property
	Syntax

	Library.MainFolder Property
	Syntax

	Library.Redraw Property
	Syntax

	Library.Title Property
	Syntax

	HotDocs.LibraryEntity Object
	HotDocs.LibraryEntity Object
	General Information
	Methods
	Properties

	LibraryEntity.AddFolder Method
	Syntax
	Return Value

	LibraryEntity.AddTemplate Method
	Syntax

	LibraryEntity.Item Method
	Syntax
	Return Value

	LibraryEntity.Remove Method
	Syntax

	LibraryEntity.Application Property
	Syntax

	LibraryEntity.Count Property
	Syntax

	LibraryEntity.Description Property
	Syntax

	LibraryEntity.ID Property
	Syntax

	LibraryEntity.IsFolder Property
	Syntax

	LibraryEntity.OverlayIndex Property
	Syntax

	LibraryEntity.Parent Property
	Syntax

	LibraryEntity.TemplateFullPath Property
	Syntax

	LibraryEntity.TemplatePath Property
	Syntax

	LibraryEntity.Title Property
	Syntax

	HotDocs.Plugin Object
	HotDocs.Plugin Object
	General Information
	Properties

	Plugin.CLSID Property
	Syntax
	Example (Visual C#)

	Plugin.Description Property
	Syntax
	Example (Visual C#)

	Plugin.priorityClass Property
	Syntax
	Example (Visual C#)

	Plugin.priorityIndex Property
	Syntax
	Example (Visual C#)

	HotDocs.PluginsClass Object
	HotDocs.PluginsClass Object
	General Information
	Methods
	Properties

	PluginsClass.Item Method
	Syntax
	Return Value
	Example (Visual C#)

	PluginsClass.Register Method
	Syntax
	Example

	PluginsClass.Unregister Method
	Syntax
	Example

	PluginsClass.Count Property
	Syntax
	Example (Visual C#)

	HotDocs.TemplateInfo Object
	HotDocs.TemplateInfo Object
	General Information
	Methods
	Properties

	TemplateInfo.Close Method
	Syntax

	TemplateInfo.Open Method
	Syntax

	TemplateInfo.ComponentCollection Property
	Syntax

	TemplateInfo.Dependencies Property
	Syntax

	TemplateInfo.EffectiveComponentFile Property
	Syntax

	TemplateInfo.PointedToComponentFile Property
	Syntax

	TemplateInfo.PrimaryComponentFile Property
	Syntax

	TemplateInfo.RecursiveDependencies Property
	Syntax

	HotDocs.VarMap Object
	HotDocs.VarMap Object
	General Information
	Methods
	Properties

	VarMap.HDVariablesAdd Method
	Syntax

	VarMap.HDVariablesItem Method
	Syntax

	VarMap.MappingAdd Method
	Syntax

	VarMap.MappingAdd2 Method
	Syntax

	VarMap.MappingAddEx2 Method
	Syntax
	Return Value

	VarMap.MappingItem Method
	Syntax

	VarMap.MappingItem2 Method
	Syntax

	VarMap.MappingRemove Method
	Syntax

	VarMap.OpenComponentFile Method
	Syntax

	VarMap.OpenMapFile Method
	Syntax

	VarMap.SaveMapFile Method
	Syntax

	VarMap.ShowUserInterface Method
	Syntax
	Return Value
	Example (Visual C#)

	VarMap.SourceNamesAdd Method
	Syntax

	VarMap.SourceNamesAdd2 Method
	Syntax

	VarMap.SourceNamesItem Method
	Syntax

	VarMap.SourceNamesItem2 Method
	Syntax

	VarMap.SourceNamesRemove Method
	Syntax

	VarMap.Application Property
	Syntax

	VarMap.DefaultBackfill Property
	Syntax

	VarMap.HDVariablesCount Property
	Syntax

	VarMap.MappingCount Property
	Syntax

	VarMap.MapTextAndMultipleChoice Property
	Syntax

	VarMap.ShowBackfillColumn Property
	Syntax

	VarMap.SourceNamesCount Property
	Syntax

	Answer Source API
	About the HotDocs Answer Source API
	What is an answer source integration?
	Answer Source Integration Example
	How do I create an answer source integration?
	To create an answer source integration

	HotDocs Answer Source API
	HotDocs Answer Source API
	Answer Source DLL Entry Points (Functions)

	BeginUpdateBatch Function
	Syntax
	Example (Visual C++)

	ChooseMultipleRecords Function
	Syntax
	Return Value
	Example (Visual C++)

	ChooseRecord Function
	Syntax
	Return Value
	Example (Visual C++)

	CloseRecord Function
	Syntax
	Return Value

	CommitUpdates Function
	Syntax
	Return Value

	EndUpdateBatch Function
	Syntax

	GetChosenRecords Function
	Syntax
	Return Value

	GetField Function
	Syntax
	Return Value
	Example (Visual C++)

	GetFieldW Function
	Syntax
	Return Value
	Example (Visual C++)

	GetFieldAccess Function
	Syntax
	Return Value
	Example (Visual C++)

	GetFieldAccessW Function
	Syntax
	Return Value
	Example (Visual C++)

	GetFieldName Function
	Syntax
	Return Value
	Example (Visual C++)

	GetFieldNameW Function
	Syntax
	Return Value
	Example (Visual C++)

	IsAvailable Function
	Syntax
	Return Value
	Example (Visual C++)

	OpenRecord Function
	Syntax
	Return Value
	Example (Visual C++)

	SetField Function
	Syntax
	Return Value
	Example (Visual C++)

	SetFieldW Function
	Syntax
	Return Value
	Example (Visual C++)

	SupportsBackfill Function
	Syntax
	Return Value
	Example (Visual C++)

	Plug-in API
	About the HotDocs Plug-in API
	What is a HotDocs plug-in?
	HotDocs Plug-in Interfaces

	How do I create a HotDocs plug-in?
	How do I create a HotDocs plug-in using Visual C#?
	To create a HotDocs plug-in using Visual C#
	Example

	ILibraryWindowContextMenuExtension Interface
	ILibraryWindowContextMenuExtension Interface
	Example (Visual C#)

	ContextCommand Function
	Syntax
	Example (Visual C#)

	ContextGetMenuEntry Function
	Syntax
	Example (Visual C#)

	ContextGetMenuTitle Function
	Syntax
	Example (Visual C#)

	ContextInitialize Function
	Syntax
	Example (Visual C#)

	ContextLibraryInitialized Function
	Syntax
	Example (Visual C#)

	ILibraryWindowFileHandlerExtension Interface
	ILibraryWindowFileHandlerExtension Interface
	Functions
	Example (Visual C#)

	Assemble Function
	Syntax
	Example (Visual C#)

	Edit Function
	Syntax
	Example (Visual C#)

	Initialize Function
	Syntax
	Example (Visual C#)

	LibraryInitialized Function
	Syntax
	Example (Visual C#)

	RegisterFileType Function
	Syntax
	Example (Visual C#)

	ILibraryWindowIconProvider Interface
	ILibraryWindowIconProvider Interface
	Functions
	Example (Visual C#)

	Initialize Function
	Syntax
	Example (Visual C#)

	LibraryInitialized Function
	Syntax
	Example (Visual C#)

	UpdateLibraryEntry Function
	Syntax
	Example (Visual C#)

	ILibraryWindowMenuExtension Interface
	ILibraryWindowMenuExtension Interface
	Functions
	Example (Visual C#)

	Command Function
	Syntax
	Example (Visual C#)

	DisplayMenuInitialize Function
	Syntax
	Example (Visual C#)

	GetMenuEntry Function
	Syntax
	Example (Visual C#)

	GetMenuTitle Function
	Syntax
	Example (Visual C#)

	Initialize Function
	Syntax
	Example (Visual C#)

	LibraryInitialized Function
	Syntax
	Example (Visual C#)

	IOutputPlugin Interface
	IOutputPlugin Interface
	Functions
	Properties
	Example

	DocumentAssembled Function
	Syntax
	Example (Visual C#)

	GetPlugInfo Function
	Syntax
	Example (Visual C#)

	Initialize Function
	Syntax
	Example (Visual C#)

	LibraryInitialized Function
	Syntax
	Example (Visual C#)

	CommandId Property
	Syntax
	Example (Visual C#)

	IPluginPreferences Interface
	IPluginPreferences Interface
	Example

	IPluginPreferences Function
	Syntax
	Example [Visual C#]

	Contact HotDocs Sales and Support
	HotDocs Technical Support
	Outside the European Union:
	Inside the European Union:

	HotDocs Sales Support
	Outside the European Union:
	Inside the European Union:

	Documentation Feedback
	Glossary
	Index

